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(1) Prove that the following series converge.

(a)
∑∞
n=1

1
n2

Solution. We can compute the definite integral

∫ ∞
1

1

x2
dx = 1. The given series is bounded

above by this integral, since the integral computes the area under the curve y = 1/x2 from
x = 1 to ∞, and

∞∑
n=1

1

n2
= 1 +

∞∑
n=2

1

n2
< 1 +

∫ ∞
1

1

x2
dx

(b)
∑∞
n=1

n
2n

Solution. Since
1

1− z
=

∞∑
n=0

zn, for |z| < 1, taking derivative of this gives

1

(1− z)2
=

∞∑
n=1

nzn−1

Hence we get

∞∑
n=1

nzn =
z

(1− z)2
for |z| < 1. Setting z = 1/2 gives

∞∑
n=1

n

2n
=

1/2

(1− 1/2)2
= 2

therefore, convergent.

(2) Find the radius of convergence of the following power series.

(a)
∑∞
n=1

n
2n z

n

Solution. Either look at the solution of the previous problem part (b), to conclude that
∞∑
n=1

n
(z

2

)n
converves for |z/2| < 1, and diverges for |z/2| > 1, hence the radius of conver-

gence is 2. Or, we can do it directly by taking the limit of the ratio of successive terms:

lim
n→∞

∣∣∣∣n+ 1

n

2n

2n+1

zn+1

zn

∣∣∣∣ =
|z|
2

Thus the radius of convergence is 2.

(b)
∑∞
n=1

1
nz

n

Solution. By ratio test, we have

lim
n→∞

∣∣∣∣ n

n+ 1

zn+1

zn

∣∣∣∣ = |z|

1
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Hence the radius of convergence is 1.

(3) Let

∞∑
n=1

cnz
n be a power series with non–zero radius of convergence. Prove that the power

series

∞∑
n=1

cn
zn−1

(n− 1)!
has infinite radius of convergence.

Solution. There are several ways to do this. Assume R is the radius of convergence

of

∞∑
n=1

cnz
n. If we assume that all cn’s are non–zero, then by ratio test we get that, for

0 < r < R:

lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ r = m < 1

Then applying ratio test to

∞∑
n=1

cn
zn−1

(n− 1)!
gives

lim
n→∞

∣∣∣∣ cncn−1
∣∣∣∣ |z|n ==

m

r
lim
n→∞

|z|
n

= 0

for any value of |z|. Hence the radius of convergence of

∞∑
n=1

cn
zn−1

(n− 1)!
is ∞.

(In order to remove the assumption that all cn’s are non–zero, we need to introduce a bit
more notation. Namely, assume 1 ≤ i1 < i2 < · · · are the indices where ci1 , ci2 , · · · are the

only non–zero terms. Then the given series is

∞∑
n=1

cinz
in . The same argument as before will

prove that the radius of convergence of

∞∑
n=1

cin
zin−1

(in − 1)!
is infinity.)

Alternately, (see the proof of Abel’s Theorem (8.4) of Lecture 8), for every 0 < r < R we
know that the numbers |cn|rn are bounded, by say M > 0. That is, for every n = 1, 2, 3, · · · ,

we have |cn|rn ≤M . Then the series

∞∑
n=1

cn
zn−1

(n− 1)!
is dominated by the exponential series,

since |cn| ≤
M

rn
:

∞∑
n=1

|cn|
|z|n−1

(n− 1)!
≤ M

r

∞∑
n=1

|z|n−1

rn−1(n− 1)!
=
M

r
e

|z|
r

which converges for all values of |z|. Hence we get that

∞∑
n=1

cn
zn−1

(n− 1)!
has infinite radius of

convergence.

(4) Find the Taylor series expansion of
z

z2 − 2z − 3
near z = 0. What is its radius of conver-

gence?

Solution. Write the partial fraction decomposition using z2 − 2z − 3 = (z − 3)(z + 1):

z

z2 − 2z − 3
=

1

4

(
3

z − 3
+

1

z + 1

)
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Now we have

3

z − 3
= − 1

1− (z/3)
= −

∞∑
n=0

(z
3

)n
1

1 + z
=

1

1− (−z)
=

∞∑
n=0

(−1)nzn

Hence we get

z

z2 − 2z − 3
=

1

4

∞∑
n=0

(
(−1)n − 1

3n

)
zn

To compute the radius of convergence, we take ratio of successive terms∣∣∣∣ (−1)n+1 − 3−n−1

(−1)n − 3−n
z

∣∣∣∣→ |z| as n→∞

Hence the radius of convergence is 1.

(5) Prove the following equation holds for |z| < 1, and any l = 0, 1, 2, · · · :

1

(1− z)l+1
=

∞∑
n=0

(n+ l)!

n!l!
zn

Solution. We have already checked this equation for l = 0. Namely, this was shown in

class that
1

1− z
=

∞∑
n=0

zn, for |z| < 1. Now
1

(1− z)l+1
is obtained from

1

1− z
by taking

derivative l times, and dividing by l!:

1

(1− z)l+1
=

1

l!

(
d

dz

)l
1

1− z

By Theorem (7.3) proved in the class, power series can be termwise differentiated, keeping
the same radius of convergence. Hence we get (for |z| < 1):

1

(1− z)l+1
=

1

l!

(
d

dz

)l
1

1− z
=

1

l!

(
d

dz

)l ∞∑
n=0

zn

=

∞∑
n=l

n(n− 1) · · · (n− l + 1)

l!
zn−l

=

∞∑
n=l

n!

(n− l)!l!
zn−l =

∞∑
m=0

(m+ l)!

m!l!
zm

where in the last line, we set m = n− l.

(6) Let f(z) =

∞∑
n=0

cnz
n be a power series with radius of convergence R > 0.

(a) Prove that for every r, with 0 < r < R we have

1

2π

∫ 2π

0

∣∣f (reiθ)∣∣2 dθ =

∞∑
n=0

|cn|2r2n
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Solution. Within the radius of convergence, the power series can be multiplied as
polynomials. So, we get:

|f(z)|2 = f(z).f(z) =

( ∞∑
n=0

cnz
n

)( ∞∑
m=0

cm (z)
m

)
=
∑
n,m

cncmz
n (z)

m

Uniform convergence implies that integral of |f(z)|2 is same as sum of integrals of
cncmz

n(z)m. Let us compute this.

1

2π

∫ 2π

0

cncmr
n+meiθ(n−m) dθ =

{
cncnr

2n if n = m
0 if n 6= m

(this is clear since we can easily check that for a non–zero integer l the integral∫ 2π

0

eilθ dθ = 0).

Hence the integral to compute is

1

2π

∫ 2π

0

∣∣f (reiθ)∣∣2 dθ =
∞∑
n=0

|cn|2r2n

as required.

(b) Let M(r) be the absolute maximum of the function |f(reiθ)| for 0 ≤ θ ≤ 2π. Recall
that we have the following inequality (Lecture 8, section (8.7)):

|cn| ≤
M(r)

rn
for every n = 0, 1, 2, · · · and 0 < r < R

Use the previous part to prove that if there is n and r such that |cn| =
M(r)

rn
, then

f(z) = cnz
n.

Solution. Since M(r) is the largest value |f(z)| can take for z = reiθ, we get∣∣∣∣ 1

2π

∫ 2π

0

∣∣f (reiθ)∣∣2 dθ∣∣∣∣ ≤ 1

2π
M(r)22π = M(r)2

Therefore, we obtain the following inequality:
∞∑
n=0

|cn|2r2n ≤M(r)2

Now if for some n and r, |cn| = M(r)/rn, then the corresponding term in the left–hand
side of the inequality above will be

|cn|2r2n =
M(r)2

r2n
r2n = M(r)2

Since the other terms of the series are non–negative, in order to preserve the inequality,
all other terms must be 0. Hence cm = 0 for m 6= n and the function f(z) is just cnz

n.


