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COMPLEX VARIABLES: HOMEWORK 4

Prove that the following series converge.
(a) Xoli e

oo
1
Solution. We can compute the definite integral / — dx = 1. The given series is bounded
1 X

above by this integral, since the integral computes the area under the curve y = 1/2? from
x =1 to oo, and

1 1 >~ 1
n=1 n=2

(b) 3oty 2w

Solution. Since

1 oo

= E 2", for |z| < 1, taking derivative of this gives
-z
n=0

l—z an

Hence we get Z nz" =

n=1

for |z| < 1. Setting z = 1/2 gives

(1 2)2

—om o (1-1/2)2

therefore, convergent.

Find the radius of convergence of the following power series.

(@) oty aw2"
Solution. Either look at the solution of the previous problem part (b), to conclude that
Z n (g) converves for |z/2| < 1, and diverges for |z/2| > 1, hence the radius of conver-

n=1
gence is 2. Or, we can do it directly by taking the limit of the ratio of successive terms:

n+1 27 zntl |2]
lim — | = —
n—oo| n 20Tl 2
Thus the radius of convergence is 2.
1
(b) >0y 52"
Solution. By ratio test, we have
n Zn+1
lim = |2|
n—oo|n+1 27

1
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Hence the radius of convergence is 1.

o0
Let E cn 2" be a power series with non-zero radius of convergence. Prove that the power
n=1
0 n—1
series E cnﬁ has infinite radius of convergence.
n—1)!
n=1

Solution. There are several ways to do this. Assume R is the radius of convergence

o0
of Z cpz". If we assume that all ¢,’s are non—zero, then by ratio test we get that, for
n=1

0<r<R:
) c
lim |2y =m <1
n—oo | Cp
> om—1
Then applying ratio test to Z Cp——— gives
(n—1)!
n=1
. C z m .. z
lim e u::—hmu:()
n—oo [Cp_1| N r n—oo N
e ,m—1
for any value of |z|. Hence the radius of convergence of Z P is o0.
n=1 (n - )
(In order to remove the assumption that all ¢,,’s are non—zero, we need to introduce a bit
more notation. Namely, assume 1 < ¢; < i3 < --- are the indices where ¢;,,c;,, -+ are the
oo
only non—zero terms. Then the given series is Z cinzi". The same argument as before will
n=1

0 in—1
prove that the radius of convergence of Z Ci,,
= (i = 1)

Alternately, (see the proof of Abel’s Theorem (8.4) of Lecture 8), for every 0 < r < R we
know that the numbers |c¢, |r"™ are bounded, by say M > 0. That is, for every n =1,2,3,-- -,

is infinity.)

Zn—l

(n—1)!

we have |c,|r™ < M. Then the series Z Cn is dominated by the exponential series,
n=1

. M
since |c,| < —:

TTL
S M
C —_— _— —_— = e T
"h—-1)! " 7 r*=l(p—1)! T
n=1 =
0 o1
which converges for all values of |z|. Hence we get that Z cnm has infinite radius of
n—1)!
=1
convergence. "
Find the Taylor series expansion of 2 9.3 near z = 0. What is its radius of conver-
2?2 — 2z —

gence?

Solution. Write the partial fraction decomposition using 2% — 22 — 3 = (z — 3)(z + 1):

z _1 3 n 1
22-922—-3 4\z2—-3  z+1
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Now we have

Hence we get

To compute the radius of convergence, we take ratio of successive terms
(_1)n+1 _ 377171
‘ (-3

Hence the radius of convergence is 1.

z| = |z] asn — o0

(5) Prove the following equation holds for |z| < 1, and any | = 0,1,2,---:

oo

1 (n+0! ,
(S D T

Solution. We have already checked this equation for [ = 0. Namely, this was shown in

1
is obtained from —— by taking

1 N 1
class that : = ZZ ) for |Z| < 1. Now m 1—2

derivative [ times, and dividing by [!:

1 14\ 1
(1—2)H1  1\dz) 1-2
By Theorem (7.3) proved in the class, power series can be termwise differentiated, keeping
the same radius of convergence. Hence we get (for |z| < 1):

1 1/d\" 1 1/d\'
T _l'<d> 1—z_l!<dz> I

n=0

inn—l (n—l—i—l)nl

n=l
=Y oo -y el
n=l m=0
where in the last line, we set m = n — [.
oo
(6) Let f(2) = Z cn 2" be a power series with radius of convergence R > 0.
n=0

(a) Prove that for every r, with 0 < r < R we have

1 27

7 2 S n
e MG IRTED SRS
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Solution. Within the radius of convergence, the power series can be multiplied as
polynomials. So, we get:

f(2)]? = f(2)-f(2) = ( %Z”) (Z Cm(Z)m> = catmz" ()"
n=0 m=0

n,m

Uniform convergence implies that integral of |f(z)|? is same as sum of integrals of
CnCmz"(Z)™. Let us compute this.

2m —.2n
1 CnCnT if n=m

0 if n#£m

(this is clear since we can easily check that for a non—zero integer ! the integral

2 )
/ e dp =0).
0

Hence the integral to compute is

1 [ 0\ |2 .-
|f (rew)‘ do = Z e |22
n=0

27 Jo

— CnCmr e mm) qg — {
27T 0

as required.

Let M(r) be the absolute maximum of the function |f(rei?)| for 0 < 6 < 27. Recall
that we have the following inequality (Lecture 8, section (8.7)):

M(r)

,rTL

len| <

for every n=10,1,2,--- and 0 <r < R

Use the previous part to prove that if there is n and r such that |c,| =

f(z) = cp2™

M
(r) , then
,rn

Solution. Since M (r) is the largest value |f(2)| can take for z = re®

1 27 i 9
%/0 |f (re'®)|” do

Therefore, we obtain the following inequality:

o
Z ‘Cn‘2T2n < M(’/‘)2
n=0

, we get

1
< —M(r)22ﬂ' = M(T)2
2

Now if for some n and r, |c,| = M (r)/r™, then the corresponding term in the left-hand
side of the inequality above will be
M(r)?
2,.2n __ 2n __ 2
len|*r<" = 2n r = M(r)

Since the other terms of the series are non—negative, in order to preserve the inequality,
all other terms must be 0. Hence ¢,;, = 0 for m # n and the function f(z) is just c,z".



