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(1) Assume f(x) is a continuous function of a real variable x (defined for every x ∈ R). Assume
further that

•
∫ ∞
0

f(x) dx exists (and is finite). Meaning: for every ε > 0 there exists T > 0 such

that

∣∣∣∣∣
∫ Q

T

f(x) dx

∣∣∣∣∣ < ε for every Q ≥ T .

• C = lim
R→∞

∫ R

−R
f(x) dx exists (and is finite). Meaning: for every ε > 0 there exists

T > 0 such that

∣∣∣∣∣
∫ Q

−Q
f(x) dx− C

∣∣∣∣∣ < ε for every Q ≥ T .

Prove that

∫ ∞
−∞

f(x) dx exists and is equal to C.

Solution. We need to prove that given any ε > 0, we can find T > 0 such that

∣∣∣∣∣
∫ R

−S
f(x) dx− C

∣∣∣∣∣ <
ε for every R,S ≥ T . By what is given, we can always find T1, T2 > 0 so that∣∣∣∣∣

∫ R2

R1

f(x) dx

∣∣∣∣∣ < ε

2

∣∣∣∣∣
∫ S

−S
f(x) dx− C

∣∣∣∣∣ < ε

2

as long as R1, R2 ≥ T1 and S ≥ T2. Now take T = maximum(T1, T2). Then for every
R,S ≥ T we will have∣∣∣∣∣

∫ R

−S
f(x) dx− C

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ S

−S
f(x) dx− C

∣∣∣∣∣+

∣∣∣∣∣
∫ R

S

f(x) dx

∣∣∣∣∣ < ε

2
+
ε

2
= ε

as required.

(2) In the following steps, prove that

∫ ∞
0

x cos(x)

x2 − 2x+ 10
dx exists.

(a) Let b1, b2, · · · be real numbers, such that b1 ≥ b2 · · · ≥ 0. Assume that lim
n→∞

bn = 0.

Then prove that

∞∑
n=1

(−1)n−1bn converges.

Solution. This is basically the alternating series test, which we prove as follows. Note
that we have

bn − bn+1 + bn+2 − · · ·+ (−1)mbn+m ≤ bn
This is because for m even we can group the terms on the left hand side as

bn − (bn+1 − bn+2)− · · · − (bn+m−1 − bn+m) ≤ bn
(since all terms in the parantheses are non-negative). Similarly when m is odd we can
group the terms as

bn − (bn+1 − bn+2)− · · · − (bn+m−2 − bn+m−1)− bm ≤ bn
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(again all terms being subtracted from bn are non-negative, including bm). Since we
are given that bn → 0 as n → ∞, this proves that given any ε > 0 we can find n such
that bn < ε. Then for every m ≥ 1 we will have

|bn − bn+1 + bn+2 − · · ·+ (−1)mbn+m| ≤ bn < ε

Hence the alternating series converges.

(b) Prove that
x

x2 − 2x+ 10
is a decreasing function of x for |x| >

√
10.

Solution. Take the derivative of this function f(x) =
x

x2 − 2x+ 10
:

f ′(x) =
−x2 + 10

(x2 − 2x+ 10)2
< 0 for x2 > 10

Thus the function f(x) is positive and decreasing for x >
√

10.

(c) Recall that cos(x) for x ∈
[

(2n+ 1)π

2
,

(2n+ 3)π

2

]
is positive if n is odd and negative

if n is even. Define real numbers cn by

(−1)n−1cn =

∫ (2n+3)π/2

(2n+1)π/2

x cos(x)

x2 − 2x+ 10
dx

Prove that c1 ≥ c2 ≥ · · · ≥ 0 and that lim
n→∞

cn = 0.

Solution. It is quite easy to see that cn → 0 as n → ∞. To save space, let me write

In for the closed interval
[
(2n+1)π

2 , (2n+3)π
2

]
. Then for x ∈ In, we have 0 < f(x) ≤

f((2n+ 1)π/3). Also, | cos(x)| ≤ 1. Therefore, we get

cn =

∣∣∣∣∫
In

f(x) cos(x) dx

∣∣∣∣ ≤ f((2n+ 1)π/3).length(In) = f((2n+ 1)π/3).π

But f((2n+ 1)π/3)→ 0 as n→∞. Hence same is true for {cn}.

Now to prove cn+1 ≤ cn we can make use of substitution y = x− π:

cn+1 = (−1)n
∫
In+1

f(x) cos(x) dx = (−1)n
∫
In

f(y + π) cos(y + π) dy

= −(−1)n
∫
In

f(y + π) cos(y) dy ≤ (−1)n−1
∫
In

f(y) cos(y) dy = cn

where we used the fact that f is decreasing, so f(y + π) ≤ f(y).

(d) Use part (a) to conclude that
∑∞
n=1(−1)n−1cn exists and that it equals

∫ ∞
3π/2

x cos(x)

x2 − 2x+ 10
dx.

Solution. This is obvious because∫ ∞
3π/2

x cos(x)

x2 − 2x+ 10
dx =

∞∑
n=1

∫ (2n+3)π/2

(2n+1)π/2

x cos(x)

x2 − 2x+ 10
dx =

∞∑
n=1

(−1)n−1cn

and the latter converges by the alternating series test from part (a).

(3) Prove that the Laplace transform of
tn

n!
(where n ≥ 0 is an integer) is z−n−1, for Re(z) >

0. (recall that the Laplace transform of a function ϕ(t) of a real variable t is given by
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0

ϕ(t)e−zt dt.)

Solution. For n = 0 this statement was proved in class:∫ ∞
o

e−tz dt =

[
e−zt

−z

]t=∞
t=0

=
1

z
if Re(z) > 0

because for Re(z) > 0, we have limt→∞ e−zt = 0 (which would be false if Re(z) were non-
positive).

Now for n ≥ 1 we have (using integration by parts):∫
tn

n!
e−zt dt =

tn

n!

e−zt

−z
+

1

z

∫
tn−1

(n− 1)!
e−zt dt

taking the limits t = 0 and t =∞, and again using that for every n ≥ 1, limt→∞ tne−zt = 0
as long as Re(z) > 0, we get∫ ∞

0

tn

n!
e−zt dt =

1

z

∫ ∞
0

tn−1

(n− 1)!
e−zt dt

and we are done by induction.


