COMPLEX VARIABLES: HOMEWORK 8

Recall that we defined the following two functions:

$$
\begin{aligned}
& \Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t \operatorname{Re}(z)>0 \\
& \Gamma_{1}(z)=\frac{1}{z e^{\gamma z} \prod_{n=1}^{\infty}\left(\left(1+\frac{z}{n}\right) e^{-\frac{z}{n}}\right)}
\end{aligned}
$$

We have not yet proved that these two are the same. In the following problems, we are only concerned with $\Gamma_{1}(z)$.
(1) In Lecture 16, page 5, the value of $\Gamma_{1}^{\prime}(1)$ is computed (it is $-\gamma$). What is the value of $\Gamma_{1}^{\prime}(n)$ where $n=2,3,4, \cdots$.
(2) Find the residue $\operatorname{Res}_{z=-n}\left(\Gamma_{1}(z)\right)$ where $n=0,1,2,3, \cdots$.
(3) Prove that $\Gamma_{1}(z)=\lim _{n \rightarrow \infty} \frac{(n-1)!}{z(z+1) \cdots(z+n-1)} \cdot n^{z}$ where $n^{z}=e^{z \ln (n)}$.
(4) Let $\Psi(z)=\frac{\Gamma_{1}^{\prime}(z)}{\Gamma_{1}(z)}$. Prove that

$$
\Psi(z+1)=\Psi(z)+\frac{1}{z}
$$

Use this to solve the following difference equation:

$$
f(z+1)=f(z)+\frac{1}{z^{2}-3 z+2}
$$

(5) Let $\Psi(z)$ be as in the previous problem. Prove that

$$
\Psi(z)-\Psi(1-z)=-\pi \cot (\pi z)
$$

(6) Let $A(z)=\prod_{n=1}^{N}\left(\frac{z-a_{n}}{z-b_{n}}\right)$, where $a_{1}, b_{1}, a_{2}, b_{2}, \cdots, a_{N}, b_{N}$ are complex numbers. Find a solution of $F(z+1)=A(z) F(z)$. Where are its zeroes and poles?

