COMPLEX VARIABLES: HOMEWORK 9

The problems below concern the gamma and the psi function, defined as:
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(1) Use Theorem 16.8 of Lecture 16 (page 9) to prove that
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. This function is holomorphic on the entire

Solution. Consider the function F(z) =

complex plane and has zeroes (each of multiplicity 1) at z = 2wik where k = £1,+2,---.
Clearly F'(0) = 1 and we can compute its logarithmic derivative as:
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Thus we get f(0) = lim e el —. Applying Theorem 16.8 we have:
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(2) Use Lecture 16 page 5, to prove that
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Solution. According to the formula given in Lecture 16, we have
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Therefore, differentiating termwise again we get:
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(3) Use GauB}’ formula:

to prove that
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Solution. Using the given formula we have:
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(4) Recall that we defined B(p,q) = / P71 (1 — 2)97 ! dz. Prove that (for Re(z) > 0):
0
I'(z) = lim B(z,n)n*
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(Hint: problem 3 of homework 8).

Solution. Since we prove that B(p,q) = FF(ZZJFFE;) we get:
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Therefore the limit in question is:
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by Problem 3 of homework 8.
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(5) Recall that we defined the numbers by, by, ba, - - - as the coefficients of the Taylor series
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(It was stated in the class that bp = 1 and b = —1/2). Prove that these numbers satisfy
the following relation, for each n > 2:
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Solution. Clear the denominator in = Z 4™, to get
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Now the coefficient of t” in the right-hand side is: E *. . Therefore, for n > 2 it
Pt k' (n —k)!

must be zero.



