
COMPLEX VARIABLES: HOMEWORK 9

The problems below concern the gamma and the psi function, defined as:
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(1) Use Theorem 16.8 of Lecture 16 (page 9) to prove that
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(2) Use Lecture 16 page 5, to prove that
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(3) Use Gauß’ formula:
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(4) Recall that we defined B(p, q) =
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xp−1(1 − x)q−1 dx. Prove that (for Re(z) > 0):
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(Hint: problem 3 of homework 8).

(5) Recall that we defined the numbers b0, b1, b2, · · · as the coefficients of the Taylor series
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(It was stated in the class that b0 = 1 and b1 = −1/2). Prove that these numbers satisfy
the following relation, for each n ≥ 2:
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