COMPLEX VARIABLES: HOMEWORK 9

The problems below concern the gamma and the psi function, defined as:

$$
\Gamma(z)=\frac{1}{z e^{\gamma z} \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right) e^{-z / n}} \quad \Psi(z)=\frac{\Gamma^{\prime}(z)}{\Gamma(z)}
$$

(1) Use Theorem 16.8 of Lecture 16 (page 9) to prove that

$$
e^{z}-1=z e^{\frac{z}{2}} \prod_{n= \pm 1, \pm 2, \cdots}\left(1-\frac{z}{2 \pi n i}\right) e^{\frac{z}{2 \pi n i}}
$$

(2) Use Lecture 16 page 5, to prove that

$$
\Psi^{\prime}(z)=\sum_{n=0}^{\infty} \frac{1}{(z+n)^{2}}
$$

(3) Use Gauß' formula:

$$
\Psi(z)=\int_{0}^{\infty}\left(\frac{e^{-t}}{t}-\frac{e^{-z t}}{1-e^{-t}}\right) d t
$$

to prove that

$$
\Psi(1)-\Psi\left(\frac{1}{2}\right)=2 \ln (2)
$$

(4) Recall that we defined $B(p, q)=\int_{0}^{1} x^{p-1}(1-x)^{q-1} d x$. Prove that $($ for $\operatorname{Re}(z)>0)$:

$$
\Gamma(z)=\lim _{n \rightarrow \infty} B(z, n) n^{z}
$$

(Hint: problem 3 of homework 8).
(5) Recall that we defined the numbers $b_{0}, b_{1}, b_{2}, \cdots$ as the coefficients of the Taylor series

$$
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} \frac{b_{n}}{n!} t^{n}
$$

(It was stated in the class that $b_{0}=1$ and $b_{1}=-1 / 2$). Prove that these numbers satisfy the following relation, for each $n \geq 2$:

$$
\sum_{k=0}^{n-1} \frac{b_{k}}{k!(n-k)!}=0
$$

