LIE GROUPS: HOMEWORK 3

Lie algebras considered in Problems 1-3 are over \mathbb{C} .

Problem 1. Let \mathbb{C}^2 be the standard 2-dimensional representation of \mathfrak{sl}_2 . That is, in a basis $\{|\uparrow\rangle, |\downarrow\rangle\}$, the action of the generators $\{\mathsf{e},\mathsf{f},\mathsf{h}\}$ is given by:

$$\begin{split} \mathbf{e} &: \left|\downarrow\right\rangle \mapsto \left|\uparrow\right\rangle \mapsto \mathbf{0} \\ \mathbf{f} &: \left|\uparrow\right\rangle \mapsto \left|\downarrow\right\rangle \mapsto \mathbf{0} \\ \mathbf{h} &: \left|\uparrow\right\rangle \mapsto \left|\uparrow\right\rangle \qquad \left|\downarrow\right\rangle \mapsto - \left|\downarrow\right\rangle \end{split}$$

If V_1 and V_2 are two representations of a Lie algebra \mathfrak{g} , then \mathfrak{g} acts on $V_1 \otimes V_2$ by the following rule:

$$X \cdot (v_1 \otimes v_2) = (X \cdot v_1) \otimes v_2 + v_1 \otimes (X \cdot v_2)$$

- (a) Compute the action of \mathfrak{sl}_2 on $\mathbb{C}^2 \otimes \mathbb{C}^2$. Verify directly that $\mathbb{C}^2 \otimes \mathbb{C}^2 = \mathbb{C}^3 \oplus \mathbb{C}$ as \mathfrak{sl}_2 representations (that is, compute the basis of the two representations on the right-hand side in terms of the standard basis $|\uparrow\uparrow\rangle$, $|\downarrow\downarrow\rangle$, $|\downarrow\downarrow\rangle$, $|\downarrow\downarrow\rangle$ of $\mathbb{C}^2 \otimes \mathbb{C}^2$).
- (b) Let $V = \underbrace{\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2}_{n \text{ terms}}$. What is the dimension of each weight space $V_{n-2k} := \{ v \in V : h.v = (n-2k)v \}$?
- (c) Use the representation theory of \mathfrak{sl}_2 and part (b) above to decompose V into direct sum of irreducible representations. Note: you do not have to compute the explicit basis of each irreducible piece.

Problem 2. Consider the Cartan matrix of type B_2 : $\begin{pmatrix} 2 & -2 \\ -1 & 2 \end{pmatrix}$. Let $\mathfrak{g} = \mathfrak{g}(B_2)$ be the Lie algebra associated to this Cartan matrix.

- (a) Compute the roots R of the corresponding root system. What is the dimension of \mathfrak{g} ?
- (b) Give an explicit basis of \mathfrak{g} in terms of its Chevalley generators. That is, for each $\alpha \in \mathbb{R}$, exhibit a non-zero vector in the root space \mathfrak{g}_{α} as successive brackets of the Chevalley generators. Describe the action of $\operatorname{ad}(\mathfrak{f}_1)$ in terms of your basis.

Problem 3. Now let $\mathfrak{g}(A_3)$ be the Lie algebra associated to the Cartan matrix of type A_3 : $\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$. Let $\{h_\ell, e_\ell, f_\ell\}_{\ell=1,2,3}$ be Chevalley generators of $\mathfrak{g}(A_3)$.

LIE GROUPS: HOMEWORK 3

(a) Let $\sigma = (13)$ be the permutation switching 1 and 3. Prove that the following is an Lie algebra automorphism of $\mathfrak{g}(A_3)$ (also denoted by σ):

 $\mathsf{e}_\ell \mapsto \mathsf{e}_{\sigma(\ell)} \qquad \mathsf{f}_\ell \mapsto \mathsf{f}_{\sigma(\ell)} \qquad \mathsf{h}_\ell \mapsto \mathsf{h}_{\sigma(\ell)}$

(b) Let $\mathfrak{g} \subset \mathfrak{g}(\mathsf{A}_3)$ be the subspace invariant under σ . That is, $\mathfrak{g} = \{x \in \mathfrak{g}(\mathsf{A}_3) : \sigma(x) = x\}$. Prove that \mathfrak{g} is a simple Lie algebra of type B_2 .

Problem 4. Given 4 real numbers $\alpha, \beta, \gamma, \delta$, consider the following three dimensional Lie algebra over \mathbb{R} . \mathfrak{a} has a basis $\{x, y, z\}$ with Lie bracket given by

$$[x, z] = \alpha x + \beta y \qquad [y, z] = \gamma x + \delta y \qquad [x, y] = 0$$

- (a) Prove that \mathfrak{a} is solvable.
- (b) What are the relations among $\alpha, \beta, \gamma, \delta$ for rank of \mathfrak{a} to be 1, 2 or 3?
- (c) Assuming $\delta = 1$, $\beta = \gamma = 0$ and $\alpha > 1$, let $\mathfrak{a}^{(\alpha)}$ be the resulting solvable Lie algebra over \mathbb{R} . Prove that $\{\mathfrak{a}^{(\alpha)}\}_{\alpha \in \mathbb{R}_{>1}}$ are all mutually non–isomorphic.

 $\mathbf{2}$