ALGEBRA 2. EXAM 1

Instructions.

- Please read the hypotheses of each problem carefully.
- Please do not seek help from your friends, professors, or the internet!
- You may consult the class notes. If you are going to use a result, that we proved in class, or homework, please write the complete reference (format, for example: Remark 9.6, page 8; or Homework 3, problem 4).
- Please hand in your solutions to Sjuvon during recitation on Tuesday (February 13, 2018) at 11.30AM. We will not accept late solutions, or solutions by email!

Problem 1. Let \mathcal{C} be a category and let A, B_1, B_2 be objects of \mathcal{C} and let $b_{\ell} : A \to B_{\ell}$ ($\ell = 1, 2$) be two morphisms in \mathcal{C} .

(a) Write the covariant functor $F : \mathcal{C} \to \mathbf{Sets}$, which if representable, is represented by the following data:

An object C of C together with two morphisms $c_{\ell} : B_{\ell} \to C, \ \ell = 1, 2$, such that $c_1b_1 = c_2b_2$. This data is then subject to the following (universal) condition:

Given an object D of C together with two morphisms $d_{\ell} : B_{\ell} \to D$, $\ell = 1, 2$, such that $d_1b_1 = d_2b_2$, there exists a unique morphism $f : C \to D$ such that $d_{\ell} = fc_{\ell}$ (again, $\ell = 1, 2$).

(b) Assume that such an object C together with morphisms c_{ℓ} exists, and assume that $\widetilde{B} := B_1 \oplus B_2$ also exists in C, and let $\iota_{\ell} : B_{\ell} \to \widetilde{B}$ be the morphisms from the definition of the direct sum.

Prove that there exists a unique morphism $\pi : \widetilde{B} \to C$ such that the following sequence is *left exact* (see what it means below), for every object D of \mathcal{C} :

$$\operatorname{Hom}_{\mathcal{C}}(C,D) \xrightarrow{-\circ \pi} \operatorname{Hom}_{\mathcal{C}}(\widetilde{B},D) \xrightarrow{-\circ \iota_1 b_1} \operatorname{Hom}_{\mathcal{C}}(A,D)$$

Meaning. The leftmost map is one to one; and its image is equal to the set of elements of the middle Hom set which go to the same element via the two rightmost maps.

Problem 2. Let C be an abelian category and consider a sequence of morphisms in C:

$$A \to B \to C \to 0$$

Prove that this sequence is exact if, and only if, for every $X \in C$ the following sequence of abelian groups is exact:

 $0 \to \operatorname{Hom}_{\mathcal{C}}(C, X) \to \operatorname{Hom}_{\mathcal{C}}(B, X) \to \operatorname{Hom}_{\mathcal{C}}(A, X)$

Problem 3. Let \mathcal{A} and \mathcal{B} be two abelian categories. Assume we are given two additive covariant functors $F : \mathcal{A} \to \mathcal{B}$ and $G : \mathcal{B} \to \mathcal{A}$ such that (F, G) is an adjoint pair. Prove that F is always right exact. (Also, G is always left exact, but you don't have to prove it).

Bonus problem. Take R to be a commutative ring with $1 \neq 0$. Let \mathcal{A} be the category of R-modules. For each $M \in \mathcal{A}$, prove that we have a pair of adjoint functors $(M \otimes_R -, \operatorname{Hom}_{\mathcal{A}}(M, -))$ from \mathcal{A} to itself. Hence, by Problem 2, we get another proof that $M \otimes_R -$ is a right exact functor.