
6112 Homework 3

Sam Mossing

February 1, 2018

Problem 1. (4) Let I = {1, 2, 3, ...} together with the usual order. Consider the following inverse system
on I valued in Ab, denoted by Z = ({Zn}n∈I ; {ϕn,m}n≤m):
Zn = Z for every n ∈ I.
For every n ≤ m, the group homomorphism ϕn,m : Zm → Zn is given by ϕn,m(x) = 3m−nx.
Prove that lim←−

(I,≤)
Z = (0)

Proof. First it is easy to verify that this is an inverse system, since ϕn,n(x) = 3n−nx = x and so ϕn,n = Id
for all n ∈ N, and next for any n ≤ m ≤ ` we have ϕn,`(x) = 3`−nx = 3(`−m)+(m−n)x = ϕn,m(3`−mx) =
ϕn,m ◦ ϕm,`(x) and so ϕn,` = ϕn,m ◦ ϕm,`.

Next we will show that (0) is the inverse limit by showing that it has the universal property (for inverse
limits). Define group homomorphisms fi : (0) → Zi = Z such that fi(0) = 0 (fi is the zero homomorphism
for all i ∈ N). Observe that ϕi,jfj(0) = 0 = fi(0) for all i ≤ j and so we see that ϕi,jfj = fi for all i ≤ j. Now
let (gi)i∈N be a collection of group homomorphisms gi : G → Zi = N (where G is some fixed abelian group
independent of i ∈ N)such that ϕi,jgj = gi for all i ≤ j, and let g : G → (0) be the zero homomorphism.
Observe that for all i ∈ N that gi = fi ◦ g, i.e. gi = 0 (the zero homomorphism). To see this, observe that
for any x ∈ G and any j ≥ i that gi(x) = ϕi,j(gj(x)) = 3j−igj(x). Therefore, taking j = i+ n for any n ∈ N
we see that gi(x) = 3ngi+n(x) for all n ∈ N and so 3n | gi+n(x) for all n ∈ N. Therefore this implies that
gi(x) = 0 (if gi(x) 6= 0 then it has a unique prime factorization and the prime 3 factors into it only finitely
many times. Alternatively if gi(x) 6= 0 then for all n gi+n(x) ∈ Z \ {0} and so |gi(x)| = 3n|gi+n(x)| ≥ 3n for
all n ∈ N which implies that gi(x) is an integer which is greater than all other integers, and such an integer
does not exist). So since i ∈ N and x ∈ G are arbitrary this implies that gi = 0 and so we have shown that
there exists g : G → (0) such that gi = fi ◦ g for all i ∈ N. Moreover we see immediately that this g is
the unique such group homomorphism (because the zero homomorphism is the only group homomorphism
between any group G and (0)). Therefore we have found morphisms fi : (0) → Zi (with ϕi,jfj = fi for all
i ≤ j) such that for any family of morphisms (gi)i∈I with gi : G→ Zi for all i and ϕi,jgj = gi for all i ≤ j,
there exists a unique g : G → 0 such that (gi)i∈I = (fi ◦ g)i∈I . This is exactly the universal property for
inverse limits, and therefore we have shown that (0) has the universal property for the inverse system Z, i.e.
that (0) = lim←−

(I,≤)
Z (the unique inverse limit up to group isomorphism).

Problem 2. (8) Prove that the inverse limit of injective morphisms is injective. Prove that the direct limit
of surjective morphisms is surjective.

Proof. Part 1: First we define the inverse limit of morphisms. Fix (I,≤) a pre-ordered set, let {Xi}i∈I ,
{ϕi,j}i≤j an inverse system (with Xi objects, ϕi,j : Xj → Xi morphisms for i ≤ j) and let {Yi}i∈I , {ψi,j}i≤j
another inverse system such that both {Xi} and {Yi} have inverse limits lim←−Xi and lim←−Yi. For any fam-
ily of morphisms (fi)i∈I such that fi : Xi → Yi for all i ∈ I and fi ◦ ϕi,j = ψi,j ◦ fj for all i ≤ j, we
will define a morphism lim←− fi : lim←−Xi → lim←−Yi as follows. By the universal property for inverse limits we
know there exist canonical maps αj : lim←−Xi → Xj , βj : lim←−Yi → Yj with ϕi,jαj = αi, ψi,jβj = βi for all
i ≤ j (and moreover the rest of the universal properties hold for (αi)i∈I , (βi)i∈I). So for all i ∈ I we have
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fi ◦ αi : lim←−Xi → Yi. So we see that (fi ◦ αi)i∈I is a family of morphisms with fi ◦ αi : lim←−Xi → Yi for
all i, ψi,j ◦ fj ◦ αj = fi ◦ ϕi,j ◦ αj = fi ◦ αi for all i ≤ j, and therefore by the universal property for lim←−Yi
there exists a unique f : lim←−Xi → lim←−Yi such that (fi ◦ αi)i∈I = (βi ◦ f)i∈I . This unique f provided by
the universal properties will be denoted lim←− fi, and so we have defined the mapping (fi)i∈I 7→ lim←− fi (where
fi : Xi → Yi with fi ◦ ϕi,j = ψi,j ◦ fj).

Now that we have defined the inverse limit of morphisms we will prove the first result. Assume fi : Xi → Yi
are injective morphisms (with fi ◦ ϕi,j = ψi,j ◦ fj). Now assume g1, g2 : Z → lim←−Xi such that lim←− fi ◦ g1 =
lim←− fi ◦ g2. Therefore we see that

(fj ◦ αj ◦ g1)j∈I = (βj ◦ lim←− fi ◦ g1)j∈I = (βj ◦ lim←− fi ◦ g2)j∈I = (fj ◦ αj ◦ g2)j∈I

and so for all j ∈ I we have fj ◦ αj ◦ g1 = fj ◦ αj ◦ g2. Next since each fj is injective, by the definition
of injectivity this implies (αi ◦ g1)i∈I = (αi ◦ g2)i∈I . Now observe that αi ◦ g1 : Z → Xi for all i ∈ I
with ϕi,jαi ◦ g1 = αj ◦ g1 for all i ≤ j, and so by the universal property for lim←−Xi there exists a unique
t : Z → lim←−Xi such that (αi◦g1)i∈I = (αi◦t). However since (αi◦g1)i∈I = (αi◦g2)i∈I with g1, g2 : Z → lim←−Xi

we see that both g1 and g2 satisfy this condition for t and so by uniqueness we see that t = g1 = g2. So we
have shown that lim←− fi ◦ g1 = lim←− fi ◦ g2 implies g1 = g2 and thus by definition lim←− fi is injective. So we have
shown that (fi)i∈I injective (with ψi,j ◦ fj = fi ◦ ϕi,j for all i ≤ j) implies that lim←− fi is injective.

Part 2: This is very similar to the first part. Again we will first define the direct limit of morphisms.
Let (I,≤) a directed set, {Xi}i∈I , {ϕj,i}i≤j and {Yi}i∈I , {ψj,i}i≤j be two direct systems which admit direct
limits lim−→Xi and lim−→Yi. Let (fi)i∈I a family of morphisms fi : Xi → Yi such that ψj,i ◦ fi = fj ◦ ϕj,i for
all i ≤ j. We define the direct limit of (fi)i∈I , denoted lim−→ fi as follows. First by the universal property
for direct limits we know that there exists canonical maps αj : Xj → lim−→Xi, βj : Yj → lim−→Xi such that
αj ◦ ϕj,i = αi for all i ≤ j, βj ◦ ψj,i = βi for all i ≤ j and such that the rest of the universal property holds
for both families α and β for lim−→Xi and lim−→Yi respectively. Now we have that βj ◦ fj : Xj → lim−→Yi such
that for all i ≤ j,

βj ◦ fj ◦ ϕj,i = βj ◦ ψj,i ◦ fi = βi ◦ fi
and so by the universal property for lim−→Xi there exists a unique f : lim−→Xi → lim−→Yi such that (βi ◦ fi)i∈I =
(f ◦αi)i∈I . Denote this f as lim−→ fi, and so by the above construction using the universal properties we have
defined a map (fi)i∈I 7→ lim−→ fi (assuming that the family (fi) satisfies the above conditions).

Now assume that (fi)i∈I is a family of surjective morphisms Xi → Yi with ψj,ifi = fj ◦ϕj,i for all i ≤ j. We
want to show that lim−→ fi is surjective also. Let g1, g2 : lim−→Yi → Z such that g1 ◦ lim−→ fi = g2 ◦ lim−→ fi. So by
definition of lim−→ fi we have that:

(g1 ◦ βj ◦ fj)j∈I = (g1 ◦ lim−→ fi ◦ αj)j∈I = (g2 ◦ lim−→ fi ◦ αj)j∈I = (g2 ◦ βj ◦ fj)j∈I .

Since fi is surjective for all i ∈ I, this implies that (g1◦βi)i∈I = (g2◦βi)i∈I . Next observe that g1◦βi : Yi → Z
such that for all i ≤ j, g1 ◦ βjψj,i = g1 ◦ βi. Therefore by the universal property for lim−→Yi there exists a
unique t : lim−→YI → Z such that (g1 ◦βi)i∈I = (t◦βi)i∈I . However we see that both g1, g2 have the properties
of t, and so by uniqueness of t this implies that t = g1 = g2. So we have shown that g1 ◦ lim−→ fi = g2 ◦ lim−→ fi
implies that g1 = g2 (where g1, g2 are any morphisms lim−→Yi → Z for some object Z). Therefore by definition
lim−→ fi is surjective. So we have shown that (fi)i∈I a family of surjective morphisms implies that lim−→ fi is
surjective (assuming the family of morphisms admits a direct limit).

Problem 3. (9) Let X be a direct system over a preordered set (I,≤) valued in Sets. Let X = ti∈IXi/ ∼
where the equivalence relation is:

x ∈ Xi ∼ ψj,i(x) ∈ Xj for every i ≤ j

Prove that X is isomophic to lim−→
(I,≤)

X
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Proof. First to treat this problem rigorously, define ti∈IXi to be a set along with canonical inclusions
fi,0 : Xi → ti∈IXi such that the images fi,0 form a disjoint union ti∈IXi =

⋃
i∈I fi,0(Xi) and such that

each fi,0 is an injection (one can show from elementary set theory that a disjoint union always exists and
that it is unique up to set bijections, i.e. isomorphism in the category of sets). Next let ∼ be the equivalence
induced by the relation given in the problem. That is, let ∼0 be the relation fi,0(x) ∼0 fj,0(ψj,i(x)) for all
x ∈ Xi, i ≤ j, and viewing the relation as a subset of the cartesian product (i.e. ∼0⊂ ti∈IXi ×ti∈IXi), we
define ∼ to be the intersection of all equivalence relations containing ∼0. Observe that this is not an empty
intersection, as the equivalence relation which puts all elements of ti∈IXi in the same equivalence class con-
tains ∼0. Also observe that this implies that ∼ is the following equivalence relation. For any x, y ∈ ti∈IXi,
x ∼ y if and only if there exists x0, ..., xn ∈ ti∈IXi with x0 = x, xn = y and such that for all 0 ≤ k ≤ n− 1
we have xk ∼0 xk+1 or xk+1 ∼0 xk (so in order to extend ∼0 to an equivalence relation we need to force
it to be symmetric and transitive by looking at all finite paths of ∼0 related elements). Let ∼′ denote the
relation defined by the right hand side (and so we will show that ∼′=∼). It is clear that if x ∼′ y, i.e. if
such a path x0, ..., xn exists, then any equivalence relation R extending ∼0 must have x0Rx1R· · ·Rxn and
so by transitivity xRy. Thus, ∼′⊂∼, and so all that remains is to show that ∼′ is itself an equivalence
relation (and thus is in the intersection defining ∼ which implies ∼⊂∼′). Clearly ∼′ is reflexive (take n = 1
and look at x0 = x1 = x, and so since ∼0 is reflexive we have x0 ∼0 x1). Next observe that it is symmetric
(if we have some x = x0, ..., xn = y then just take yk = xn−k for all 0 ≤ k ≤ n and so y = y0, ..., yn = x
and for all k either yk ∼0 yk+1 or yk+1 ∼0 yk). Finally for transitivity, if we have x,y equivalent and x, z
equivalent, then we have some x = x0, ..., xn = y and y = y0, ..., ym = z and so this gives us the sequence
x = x0, ..., xn, y1, ..., ym = z such that every adjacent pair of elements are related by ∼0. Thus ∼′ is an
equivalence relation, and so ∼⊂∼′⊂∼ and therefore ∼=∼′. So we have descreibed the equivalence relation
∼ explicitly (for any elements x, y ∈ ti∈IXi we see that x ∼ y if and only if there is a finite sequence of
elements in ti∈IXi which starts from x, ends at y, and such that every adjacent pair of elements is related
by ∼0). So we can define X = ti∈IXi/ ∼ and the quotient map Q : ti∈IXi → X which sends any element
x in the domain to the equivalence class x containing x.

We know that the direct limit (if it exists) is unique up to isomorphism and that an object is (isomor-
phic to) the direct limit if it has the universal property for the direct system. So we will show that X
has the universal property for the direct system X. Recall that morphisms in Sets are set maps and iso-
morphisms are set bijections. Recall we gave inclusion maps fi,0 : Xi → ti∈IXi with the definition of the
disjoint union, and the quotient map Q, and so composing these two together we have a family of maps
fi = Q◦fi,0 : Xi → X. Observe that for all i ≤ j that fjψj,i = fi, since for any x ∈ Xi we have by definition
of ∼0, fi,0(x) ∼0 fj,0(ψj,i(x)), and thus fi,0(x) ∼ fj,0(ψj,i(x)) and so by the definition of the quotient map
Q we have Q(fi,0(x)) = Q(fj,0(ψj,i(x))). Since x ∈ Xi is arbitrary and Q ◦ fi,0 = fi, Q ◦ fj,0 = fj we have
shown that fi = fj ◦ ψj,i. Therefore fi = fj ◦ ψj,i for all i ≤ j.

Now let (gi)i∈I be a family of set maps gi : Xi → Y (where Y is some set), such that gj ◦ ψj,i = gi
for all i ≤ j. Define a set map g0 : ti∈IXi → Y as follows. For all i ∈ I, xi ∈ Xi define g0(fi,0(xi)) = gi(xi).
Observe that since fi,0 is injective for all i and that since the images fi,0(Xi) form a disjoint union equal to
ti∈IXi, this gives us a well defined map g0 : ti∈IXi → Y (basically g0 is a piecewise function defined on
pieces indexed by I). Now observe that g0 is constant on equivalence classes of ∼. To see this, first assume
that x ∼0 y, and so x = fi,0(xi) for some xi ∈ Xi and y = fj,0(ψj,i(xi)) for some j ≥ i. Therefore we see
that

g0(x) = g0(fi,0(xi)) = gi(xi) = gj(ψj,i(xi)) = g0(fj,0(ψj,i(xi))) = g0(y)

(since gi = gj ◦ ψj,i by assumption). So we have shown that x ∼0 y implies g0(x) = g0(y). Now assume
x ∼ y, and so there exists a finite sequence x = x0, ..., xn = y such that for every 0 ≤ k ≤ n− 1, xk ∼0 xk+1

or xk+1 ∼0 xk. Therefore by above, g0(xk) = g0(xk+1) or g0(xk+1) = g0(xk) for all 0 ≤ k ≤ n and therefore
we see that g0(x) = g0(x0) = ... = g0(xn) = g0(y). So we have shown that x ∼ y implies g0(x) = g0(y).
Therefore we see that g0 descends to the well defined set map g : X → Y , g(x) = g0(x) (where x denotes
the equivalence class of x ∈ ti∈IXi, g is well defined because x ∼ y implies g0(x) = g0(y)). We will show
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that g is the unique map from X to Y such that (gi)i∈I = (g ◦ fi)i∈I .

Fix i ∈ I and xi ∈ Xi, and observe that

g(fi(xi)) = g(Q(fi,0(xi))) = g0(fi,0(xi)) = gi(xi).

So since xi ∈ XI and i ∈ I arbitrary this shows that g ◦ fi = gi for all i ∈ I. So we have shown that
there exists a map g : X → Y such that (gi)i∈I = (g ◦ fi)i∈I . Next to show uniqueness, observe that if
h ◦ fi = gi for all i ∈ I, then for any xi ∈ Xi we have gi(xi) = h(fi(xi)) and gi(xi) = g(fi(xi))., and so
h(fi(xi)) = g(fi(xi)) for all i ∈ I, xi ∈ Xi. Therefore, h and g agree on the image of fi for all i ∈ I (i.e.
h(y) = g(y) for all y ∈ fi(Xi), i ∈ I), but observe that X =

⋃
i∈i fi(Xi) (since ti∈IXi =

⋃
i∈I fi,0(Xi) and

Q(ti∈IXi) = X) and so this implies that h = g (since these are set maps we have been able to examine
them pointwise to show this uniqueness). So we have shown uniqueness.

Therefore we have chosen a family of set maps (fi)i∈I such that fi : Xi → X with fjψj,i = fi for all
i ≤ j, and such that for any family (gi)i∈I of set maps gi : Xi → Y with Y an arbitrary set and gj ◦ψj,i = gi
for all i ≤ j, there exists a unique g : X → Y such that (gi)i∈I = (g ◦ fi)i∈I . So we have shown exactly
the universal property for direct limits, and thus we conclude that X = lim−→X (the unique direct limit up to
isomorphism).

Problem 4. (10) With the set up of Problem 9 above, assume that I is right directed and each Xi has a
structure of a group and each ψj,i is a group homomorphism. Prove that X has a natural structure of a
group which makes it isomorphic to the direct limit of X in the category of groups.

Proof. Define the disjoint union ti∈IXi with canonical inclusion maps fi,0 : Xi → ti∈IXi in the same way
as in the previous problem, and again let ∼ be the equivalence relation induced by ∼0 in the same way as the
previous problem, with Q : ti∈IXi → X the quotient map and fi = Q ◦ fi,0 : Xi → X for all i ∈ I. Observe
that with the additional assumption that I is right directed, we get that ∼ is an even simpler equivalence
relation as follows: x ∼ y if and only if there exists xi ∈ Xi and yj ∈ Xj such that x = fi,0(xi), y = fj,0(yj),
and there exists k ≥ i, j such that ψk,i(xi) = ψk,j(xj). Clearly we see that fi,0(xi) ∼0 fk,0(ψk,i(xi)) and
fj,0(xj) ∼0 fk,0(ψk,j(xj)) and so for any equivalence relation R extending ∼0 we have fj,0(xj)Rfj,0(xj), i.e.
xRy. Additionally observe that the properties defined above give an equivalence relation ∼′ (i.e. x ∼′ y if
there exists xi ∈ Xi and yj ∈ Xj such that x = fi,0(xi), y = fj,0(yj), and there exists k ≥ i, j such that
ψk,i(xi) = ψk,j(xj)). To see this note that ∼′ is clearly reflexive and symmmetric, and for transitivity if
fi,0(xi) ∼′ fj,0(xj) ∼′ fk, 0(xk), then there exists m ≥ i, j and n ≥ j, k such that ψm,i(xi) = ψm,j(xj) and
ψn,j(xj) = ψn,k(xk), and moreover there exists ` ≥ n,m by I right directed, and therefore

ψ`,i(xi) = ψ`,mψm,i(xi) = ψ`,mψm,j(xj) = ψ`,j(xj) = ψ`,nψn,j(xj) = ψ`,nψn,k(xk) = ψ`,k(xk)

and so fi,0(xi) ∼′ fk,0(xk). So we have that ∼′ is an equivalence relation contained by all equivalence rela-
tions R containing ∼0, and therefore we have ∼′=∼. So with the assumption that I is right directed we get
a nicer induced relation ∼ on ti∈IXi and we will use this to define a group structure on X.

Define multiplication on X as follows. For any i, j ∈ I and xi ∈ Xi, xj ∈ Xj define fi(xi) ∗ fj(xj) =
fk(ψk,i(xi)ψk,j(xj)) where k ∈ I such that k ≥ i, j. Since I is right directed there exists such a k, since
each Xi is a group the multiplication ψk,i(xi)ψk,j(xj) makes sense as multiplication in Xk, but we need to
show that the multiplication on X is well defined (i.e. the result is independent of what k you use and
is also independent of what entries in the equivalence class of fi(xi) and fj(xj) you use). Assume that
k, ` ∈ I with k ≥ i, j and ` ≥ i, j and examine the two elements fk(ψk,i(xi)ψk,j(xj)), f`(ψ`,i(xi)ψ`,j(xj)).
Observe that there exists m ≥ k, ` and so we have fmψm,k = fk and fmψm,` = f` (proved last problem)
and note that by definition of the (fi)i∈I we know that fk(ψk,i(xi)ψk,j(xj)) is the equivalency class contain-
ing fk,0(ψk,i(xi)ψk,j(xj)) and f`(ψ`,i(xi)ψ`,j(xj)) is the equivalency class containing f`,0(ψ`,i(xi)ψ`,j(xj)).
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Observe that

ψm,k(ψk,i(xi)ψk,j(xj)) = ψm,k(ψk,i(xi))ψm,k(ψk,j(xj)) = ψm,i(xi)ψm,j(xj)

(using the extra assumption that the family ψ are group homomorphisms) and

ψm,`(ψ`,i(xi)ψ`,j(xj)) = ψm,`(ψ`,i(xi))ψm,`(ψ`,j(xj)) = ψm,i(xi)ψm,j(xj).

Therefore ψm,k(ψk,i(xi)ψk,j(xj)) = ψm,`(ψ`,i(xi)ψ`,j(xj)) and so by the definition of ∼ which we showed
above, this implies that fk,0(ψk,i(xi)ψk,j(xj)) ∼ f`,0(ψ`,i(xi)ψ`,j(xj)) i.e. that fk(ψk,i(xi)ψk,j(xj)) =
f`(ψ`,i(xi)ψ`,j(xj)). Next we want to show that it is independent of the choice of entry in the equiva-
lency class (i.e. that we have defined multiplication between equivalency classes rather than between fixed
representatives of the equivalency classes). Assume fi,0(xi) ∼ fj,0(xj) and fk,0(xk) ∼ f`,0(x`), and we want
to show that fi(xi) ∗ fk(xk) = fj(xj) ∗ f`(x`). That is, we want to show that fm,0(ψm,i(xi)ψm,k(xk)) ∼
fn,0(ψn,j(xj)ψn,`(x`)) where n ≥ j, ` and m ≥ i, k (using the previous fact that our choice of m and n
doesn’t matter). To see this, again by I right directed we can choose some t ≥ m,n, i, j, k, ` such that
ψt,i(xi) = ψt,j(xj) and ψt,k(xk) = ψt,`(x`). Thus we see that:

ψt,m(ψm,i(xi)ψm,k(xk)) = ψt,i(xi)ψt,k(xk) = ψt,j(xj)ψt,`(x`) = ψt,n(ψn,j(xj)ψn,`(x`)).

and so by the definition of ∼ and ∗ we have shown fi(xi) ∗ fk(xk) = fj(xj) ∗ f`(x`). So we have a well
defined binary operator ∗: X ×X → X. Now we want to show that ∗ has the required properties for group
multiplication (associativity, identity, inverses).

Associativity: Let x, y, z ∈ X and so we want to show that (x ∗ y) ∗ z = x ∗ (y ∗ z). There exists i, j, k ∈ I,
xi ∈ Xi, xj ∈ Xj , xk ∈ Xk such that x = fi(xi), y = fk(xk), z = fj(xj). Now since I is right directed we can
choose t ≥ i, j, k (choosem ≥ i, j, n ≥ j, k and t ≥ m,n). Therefore by definition (x∗y) = ft(ψt,i(xi)ψt,j(xj)),
and so since t ≥ t, k we have

(x ∗ y) ∗ z = ft(ψt,t(ψt,i(xi)ψt,j(xj))ψt,k(xk)) = ft(ψt,i(xi)ψt,j(xj)ψt,k(xk))

by associativity of multiplication in the groupXt (and by ψt,t the identity). Similarly y∗z = ft(ψt,j(xj)ψt,k(xk))
and

x ∗ (y ∗ z) = ft(ψt,i(xi)ψt,t(ψt,j(xj)ψt,k(xk))) = ft(ψt,i(xi)ψt,j(xj)ψt,k(xk)).

Therefore (x ∗ y) ∗ z = x ∗ (y ∗ z) for any x, y, z ∈ X and so ∗ is associative.

Identity: Let e = fi(ei) for some i ∈ I, ei ∈ Xi the identity element. Assume for now that i is fixed,
and we will show that e is the multiplicative identity (moreover since i is arbitrary and multiplicative
identities are unique this implies that fi(ei) = fj(ej) for all i, j ∈ I, although we could also prove this
fact directly). Let x ∈ X arbitrary, so there exists j ∈ I such that x = fj(xj) for some xj ∈ Xj . So
choosing t ≥ i, j we have e ∗ x = ft(ψt,i(ei)ψt,j(xj)). However, since ψt,i is a group homomorphism we
have ψt,i(ei) = et and so e ∗ x = ft(ψt,j(xj)). Observe that fj,0(xj) ∼ ft,0(ψt,j(xj)) since t ≥ t, j with
ψt,j(xj) = ψt,t(ψt,j(xj)) = ψt,j(xj). Therefore ft(ψt,j(xj)) = fj(xj) and so we have shown that e ∗ x = x.
Similarly,

x ∗ e = ft(ψt,j(xj)ψt,i(ei)) = ft(ψt,j(xj)) = x.

So we have that e ∈ X is an identity element (and thus it follows that it is the unique identity element).

Inverses: Fix x ∈ X, and so there exists i ∈ I such that x = fi(xi). Let y = fi(x
−1
i ) (where x−1i is

the inverse in Xi). So, since i ≥ i, i we see by definition of ∗ that:

x ∗ y = fi(ψi,i(xi)ψi,i(x
−1
i ) = fi(xix

−1
i ) = fi(ei) = e
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(recall that e = fi(ei) for all i ∈ I) and

y ∗ x = fi(ψi,i(x
−1
i )ψi,i(xi)) = fi(x

−1
i xi) = fi(ei) = e.

So y acts as the inverse for x, and so we have shown that any element of X has an inverse x−1.

So we have shown that X is a group, so now we want to show X has the universal property (as a di-
rect limit of groups). We already gave set maps fi : Xi → X such that fjψj,i = fi for all i ≤ j (by the
previous problem), next we will show that they are group homomorphisms. Observe that for any i ∈ I and
xi, yi ∈ Xi we have that

fi(xi) ∗ fi(yi) = fi(ψi,i(xi)ψi,i(yi)) = fi(xiyi)

and so we see that fi : Xi → X is a group homomorphism for all i ∈ I. Next assume we have a family
of group homomorphisms (gi)i∈I with gi : Xi → H for all i and gj ◦ ψj,i = gi for all i ≤ j. Therefore by
the previous problem, since the {Xi} and {ψi,j} form a direct system as sets with direct limit X, by the
universal property there is a unique set map g : X → H such that (gi)i∈I = (g ◦ fi)i∈I . Next we want to
show that g is a group homomorphism. First recall how we defined g, and next recall that for any x, y ∈ X
there exists some xi ∈ Xi, xj ∈ Xj such that x = fi(xi) and y = fj(xj). Choose t ≥ i, j and so by definition
of ∼ we have that x = ft(ψt,i(xi)) and y = ft(ψt,j(xj)), and thus g(x) = gt(ψt,i(xi)) and g(y) = gt(ψt,j(xj)).
So since gt is a group homomorphism,

g(x)g(y) = gt(ψt,i(xi))gt(ψt,j(xj)) = gt(ψt,i(xi)ψt,j(xj)).

Observe that x ∗ y = ft(ψt,i(xi)ψt,j(xj)) and so g(x ∗ y) = gt(ψt,i(xi)ψt,j(xj)) = g(x)g(y). Since x, y ∈ X
arbitrary we have shown that g is a group homomorphism. So we have shown existence of such a group
homomorphism g, and uniqueness follows from the uniqueness of g as a set map (if there exists another
group homomorphism h : X → H such that (gi)i∈I = (h◦fi)i∈I , then by uniqueness from universal property
as a direct limit of sets this implies that h = g as set maps, and two group homomorphisms being equal as
set maps implies they are equal as group homomorphisms).

Therefore we have shown that X is a group and it satisfies the universal property for the direct system
of groups {Xi}i∈I , {ψj,i}i≤j , and thus this implies that X = lim−→X (i.e. X is the direct limit of X which is
unique up to group isomorphism).

6


