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Problem 1. (4) Let I = {1,2,3,...} together with the usual order. Consider the following inverse system
on I valued in Ab, denoted by 3 = ({Z,, }ner; {@nmtn<m):
Zy, = 7 for every n € I.
For every n < m, the group homomorphism ¢, ,,, : Zp, = Z,, is given by ¢p, m(z) = 3™ "z.
Prove that lim 3 = (0)
—
(1,<)

Proof. First it is easy to verify that this is an inverse system, since ¢, ,(x) = 3" "2 = x and so ¢, , = Id
for all n € N, and next for any n < m < £ we have p, ¢(z) = 3/ "z = 3U—m)+(m=nlgp — o (3""2) =
©n,m © me,f(x) and so Pnt = Pn,m © Pm -

Next we will show that (0) is the inverse limit by showing that it has the universal property (for inverse
limits). Define group homomorphisms f; : (0) — Z; = Z such that f;(0) = 0 (f; is the zero homomorphism
for all i € N). Observe that ¢; ; f;(0) = 0 = f;(0) for all i < j and so we see that ¢; ; f; = f; forall ¢ < j. Now
let (g;)ien be a collection of group homomorphisms g; : G — Z; = N (where G is some fixed abelian group
independent of ¢ € N)such that ¢; ;9; = ¢; for all ¢ < j, and let g : G — (0) be the zero homomorphism.
Observe that for all ¢ € N that g; = f; 0 g, i.e. g; = 0 (the zero homomorphism). To see this, observe that
for any x € G and any j > i that g;(x) = ¢; ;(g;(z)) = 397 'g;(x). Therefore, taking j =i+ n for any n € N
we see that g;(z) = 3"g;1n(x) for all n € N and so 3" | g;1n(x) for all n € N. Therefore this implies that
gi(x) =0 (if g;(x) # 0 then it has a unique prime factorization and the prime 3 factors into it only finitely
many times. Alternatively if g;(z) # 0 then for all n g;,(z) € Z\ {0} and so |g;(x)| = 3"|gitn(x)| > 3™ for
all n € N which implies that g;(x) is an integer which is greater than all other integers, and such an integer
does not exist). So since i € N and « € G are arbitrary this implies that g; = 0 and so we have shown that
there exists g : G — (0) such that g; = f; o g for all i € N. Moreover we see immediately that this g is
the unique such group homomorphism (because the zero homomorphism is the only group homomorphism
between any group G and (0)). Therefore we have found morphisms f; : (0) — Z; (with ¢, ; f; = f; for all
i < j) such that for any family of morphisms (g;);er with g; : G — Z; for all i and ¢; jg; = g; for all i < j,
there exists a unique g : G — 0 such that (g;)icr = (fi © 9)icr. This is exactly the universal property for
inverse limits, and therefore we have shown that (0) has the universal property for the inverse system 3, i.e.
that (0) = lim 3 (the unique inverse limit up to group isomorphism). O
(1,2)

Problem 2. (8) Prove that the inverse limit of injective morphisms is injective. Prove that the direct limit
of surjective morphisms is surjective.

Proof. Part 1: First we define the inverse limit of morphisms. Fix (I, <) a pre-ordered set, let {X;}cr,
{@i.;}i<; an inverse system (with X; objects, ¢; j : X; — X, morphisms for ¢ < j) and let {Y;}ier, {0 }i<;
another inverse system such that both {X;} and {Y;} have inverse limits lim X; and limY;. For any fam-
ily of morphisms (f;)ier such that f; : X; — Y; for all ¢ € I and f; 0¢;; = 9;; 0 f; for all i < j, we
will define a morphism @ fi: @Xi — limY; as follows. By the universal property for inverse limits we
know there exist canonical maps «a; : lim X; — X, B; : IimY; — Y} with ¢; jo; = «y, 95 ;8; = B; for all
1 < j (and moreover the rest of the universal properties hold for («;)ier, (Bi)icr). So for all i € I we have



fioa; : imX; — Y;. So we see that (f; o a;)ier is a family of morphisms with f; o a; : I.&HXZ' —Y; for
all i, ¥ 5o fjoa; = fiop;joa; = fioa; for all 7 < j, and therefore by the universal property for limY;
there exists a unique f : l'&lXi — @E such that (f; o a;)ier = (Bi © f)ier- This unique f provided by
the universal properties will be denoted l<£1 fi, and so we have defined the mapping (f;)ics — @1 fi (where
Ji: Xo = Yy with fiog; ;=i ;0 fj).

Now that we have defined the inverse limit of morphisms we will prove the first result. Assume f; : X; — Y;
are injective morphisms (with f; o @; ; = 1; ; o f;). Now assume g1,92 : Z — yLnXi such that @fi 0g1 =
].gl fi 0 g2. Therefore we see that

(fjoajogi)jer = (Bjo lim f; o g1)jer = (Bj o lim f; o 92)jer = (fj o 0g2)jer

and so for all j € I we have fjoa;0g; = fj oaj0gs. Next since each f; is injective, by the definition
of injectivity this implies (a; o g1)icr = (@; 0 g2)icr. Now observe that o, 091 : Z — X; for all i € T
with ¢; jo; 0 g1 = a0 gy for all i < j, and so by the universal property for lim X; there exists a unique
t: Z — lim X; such that (a;og1)ier = (ayot). However since (;091)ier = (aiothI with g1,92 : Z — lim X;
we see that both ¢g; and gy satisfy this condition for £ and so by uniqueness we see that t = g; = g2. So we
have shown that lim f; 0 g1 = I&H fioge implies g1 = g» and thus by definition I&nfz is injective. So we have
shown that (f;)icr injective (with 1; j o f; = fi o ¢, ; for all ¢ < j) implies that l&nfZ is injective.

Part 2: This is very similar to the first part. Again we will first define the direct limit of morphisms.
Let (I, <) a directed set, {X;}icr, {¢;,i}ti<; and {Y; }ier, {¢): }i<; be two direct systems which admit direct
limits ligXi and h_n}Yl Let (fi)ier a family of morphisms f; : X; — Y; such that ¢;; o f; = f; o ¢, for
all i < j. We define the direct limit of (f;)ier, denoted hﬂ fi as follows. First by the universal property
for direct limits we know that there exists canonical maps a; : X; — lim X;, 8; : Y; — lim X; such that
ajop;; =ay foralli <j, B0v;,; =B, for all i < j and such that the rest of the universal property holds
for both families o and ( for li_n}Xi and hﬂYz respectively. Now we have that 3; 0 f; : X; — li%in such
that for all 7 < j,
Bjo fiowji=Bjovjiofi=piofi

and so by the universal property for li%Xi there exists a unique f : hﬂ X, — liAlYZ— such that (B; o fi)ier =
(f oy)ier. Denote this f as hﬂ fi, and so by the above construction using the universal properties we have
defined a map (f;)ics — lim fi (assuming that the family (f;) satisfies the above conditions).

Now assume that (f;);cs is a family of surjective morphisms X; — Y; with ¢;;f; = fjop;,; for alli < j. We
want to show that hgfl is surjective also. Let g1,¢2 : @Yi — Z such that g; o h_n}fl =gg0 11_n>1fZ So by
definition of hﬂ fi we have that:

(910850 fj)ier = (grolim fi o aj)jer = (g2 o lim fi 0 aj)jer = (g2 © Bj © fj)jer-

Since f; is surjective for all ¢ € I, this implies that (g108;)icr = (9208;)icr- Next observe that g108; : Y; — Z
such that for all ¢ < j, g1 0 89, = g1 o B;. Therefore by the universal property for limY; there exists a
unique ¢ : lim Yy — Z such that (g1 08;)icr = (toBi)icr- However we see that both g1, g2 have the properties
of ¢, and sﬁy uniqueness of ¢ this implies that ¢ = g1 = g2. So we have shown that g; o hﬂfl =ggo0 hﬂft
implies that g1 = g2 (where g1, g2 are any morphisms lim Y; — Z for some object Z). Therefore by definition
@ fi is surjective. So we have shown that (f;);c; a family of surjective morphisms implies that hg fiis
surjective (assuming the family of morphisms admits a direct limit). O

Problem 3. (9) Let X be a direct system over a preordered set (I, <) valued in Sets. Let X = ;e X;/ ~
where the equivalence relation is:

ze X, ~1ji(x) e X, for every i < j

Prove that X is isomophic to hi>n X
I,<)



Proof. First to treat this problem rigorously, define U;c;X; to be a set along with canonical inclusions
fio © Xi = Uier Xy such that the images f; o form a disjoint union U;erX; = U, fi,0(X;) and such that
each f; ¢ is an injection (one can show from elementary set theory that a disjoint union always exists and
that it is unique up to set bijections, i.e. isomorphism in the category of sets). Next let ~ be the equivalence
induced by the relation given in the problem. That is, let ~¢ be the relation f; o(x) ~o fj0(¢;:(x)) for all
x € X;, 1 < j, and viewing the relation as a subset of the cartesian product (i.e. ~oC U;erX; X Uier X;), we
define ~ to be the intersection of all equivalence relations containing ~q. Observe that this is not an empty
intersection, as the equivalence relation which puts all elements of Ll;c; X; in the same equivalence class con-
tains ~g. Also observe that this implies that ~ is the following equivalence relation. For any x,y € U;c1 X,
x ~ g if and only if there exists xq, ..., x, € U;c;X; with xg = x, x,, = y and such that forall 0 <k <n -1
we have x ~g Tr41 Or Tr41 ~o Tk (so in order to extend ~¢ to an equivalence relation we need to force
it to be symmetric and transitive by looking at all finite paths of ~¢ related elements). Let ~' denote the
relation defined by the right hand side (and so we will show that ~'=~). It is clear that if © ~' y, i.e. if
such a path xg, ..., z,, exists, then any equivalence relation R extending ~g must have xoRz1R - - - Rx, and
so by transitivity £Ry. Thus, ~'C~, and so all that remains is to show that ~' is itself an equivalence
relation (and thus is in the intersection defining ~ which implies ~C~"). Clearly ~' is reflexive (take n =1
and look at 29 = x1 = x, and so since ~ is reflexive we have zg ~g z1). Next observe that it is symmetric
(if we have some x = xg, ..., 2, = y then just take yp = z,_j for all 0 < k < mn and so y = yo,...,Yn = T
and for all k either yx ~o Yr+1 OF Yr+1 ~o Yx). Finally for transitivity, if we have x,y equivalent and x, z
equivalent, then we have some z = xg,...,z,, = y and y = ¥y, ..., Yym = z and so this gives us the sequence
T = Xgy.-, Tn, Y1, -, Ym = 2 such that every adjacent pair of elements are related by ~g. Thus ~' is an
equivalence relation, and so ~C~'C~ and therefore ~=~'. So we have descreibed the equivalence relation
~ explicitly (for any elements z,y € U;c;X; we see that  ~ y if and only if there is a finite sequence of
elements in L;c; X; which starts from x, ends at y, and such that every adjacent pair of elements is related
by ~p). So we can define X = U;c;X;/ ~ and the quotient map @ : U;c; X; — X which sends any element
z in the domain to the equivalence class T containing .

We know that the direct limit (if it exists) is unique up to isomorphism and that an object is (isomor-
phic to) the direct limit if it has the universal property for the direct system. So we will show that X
has the universal property for the direct system X. Recall that morphisms in Sets are set maps and iso-
morphisms are set bijections. Recall we gave inclusion maps f; 0 : X; — U;erX; with the definition of the
disjoint union, and the quotient map ), and so composing these two together we have a family of maps
fi=Qo fio:X; = X. Observe that for all ¢ < j that f;v,; = f;, since for any € X; we have by definition
of ~q, fio(z) ~o fj0(¥;,i(x)), and thus f; o(x) ~ fj0(¢;,:(x)) and so by the definition of the quotient map
Q@ we have Q(fio(z)) = Q(fj0(¢;,i(x))). Since z € X, is arbitrary and Q o f; 0 = fi, Qo f;0 = f; we have
shown that f; = f; 0 1; ;. Therefore f; = f; 0;; for all i < j.

Now let (gi)icr be a family of set maps g; : X; — Y (where Y is some set), such that g; o ¥;; = g
for all ¢ < j. Define a set map go : L;er X; — Y as follows. For all i € I, z; € X; define go(fi 0(2:)) = g:i(z:).
Observe that since f; o is injective for all ¢ and that since the images f; o(X;) form a disjoint union equal to
U;erX;, this gives us a well defined map g¢o : U;erX; — Y (basically go is a piecewise function defined on
pieces indexed by I). Now observe that go is constant on equivalence classes of ~. To see this, first assume
that « ~o y, and so « = f; o(x;) for some z; € X; and y = f;0(¢;,i(z;)) for some j > i. Therefore we see
that
go(x) = go(fio(2:)) = gi(wi) = g5 (1hy,i(x:)) = go(f0(¥si(xi))) = go(y)

(since g; = g; o ¥;; by assumption). So we have shown that  ~ y implies go(z) = go(y). Now assume
x ~ gy, and so there exists a finite sequence x = zy, ..., z,, = y such that for every 0 < k <n —1, xx ~¢ Tg41
or Tp4+1 ~o Z. Therefore by above, go(k) = go(xk+1) or go(Trr+1) = go(zk) for all 0 < k < n and therefore
we see that go(z) = go(xo) = ... = go(xn) = go(y). So we have shown that x ~ y implies go(x) = go(y).
Therefore we see that gy descends to the well defined set map g : X — Y, ¢(ZT) = go(z) (where T denotes
the equivalence class of © € U;crX;, g is well defined because x ~ y implies go(z) = go(y)). We will show



that g is the unique map from X to Y such that (g;)ier = (g © fi)icr-
Fix i € I and z; € X;, and observe that

g(fi(xi)) = 9(Q(fio(x:))) = go(fio(xi)) = gi(wi).

So since x; € X7 and ¢ € [ arbitrary this shows that go f; = ¢; for all © € I. So we have shown that
there exists a map g : X — Y such that (g;)ic; = (g © fi)ier. Next to show uniqueness, observe that if
ho f; = g; for all i € I, then for any z; € X; we have g;(z;) = h(fi(z;)) and g;(x;) = g(fi(z:))., and so
h(fi(z:)) = g(fi(x;)) for all ¢ € I, z; € X;. Therefore, h and g agree on the image of f; for all i € T (i.e.
h(y) = g(y) for all y € fi(X;), i € I), but observe that X = J,; fi(X;) (since Ujer X; = U, fi,0(X;) and
Q(U;erX;) = X) and so this implies that h = g (since these are set maps we have been able to examine
them pointwise to show this uniqueness). So we have shown uniqueness.

Therefore we have chosen a family of set maps (f;)ier such that f; : X; — X with f;e;; = f; for all
i < j, and such that for any family (g;);cs of set maps g; : X; = Y with Y an arbitrary set and g; 09, ; = g;
for all ¢ < j, there exists a unique g : X — Y such that (g;)ic; = (g © fi)icz- So we have shown exactly
the universal property for direct limits, and thus we conclude that X = hﬂf{ (the unique direct limit up to
isomorphism). O

Problem 4. (10) With the set up of Problem 9 above, assume that I is right directed and each X; has a
structure of a group and each 1;; is a group homomorphism. Prove that X has a natural structure of a
group which makes it isomorphic to the direct limit of X in the category of groups.

Proof. Define the disjoint union L;c; X; with canonical inclusion maps f; 9 : X; — U;erX; in the same way
as in the previous problem, and again let ~ be the equivalence relation induced by ~ in the same way as the
previous problem, with @ : U;c7 X; — X the quotient map and f; = Qo fio: X; = X for all : € I. Observe
that with the additional assumption that I is right directed, we get that ~ is an even simpler equivalence
relation as follows: = ~ y if and only if there exists z; € X; and y; € X, such that x = f; o(x;), v = fj,0(v;),
and there exists k > ¢,j such that ¢y ;(x;) = ¥ ;(z;). Clearly we see that f;o(z;) ~o fr,o0(¥k,:(z:)) and
fio(x;) ~o fr,o(¥r,;(x;)) and so for any equivalence relation R extending ~¢ we have f; o(z;)Rf;0(z;), i.e.
2Ry. Additionally observe that the properties defined above give an equivalence relation ~' (i.e. = ~' y if
there exists x; € X; and y; € X; such that © = f; 0(2;), y = fj0(y;), and there exists k£ > ¢, j such that
Yr,i(2;) = Yr;(z;)). To see this note that ~ is clearly reflexive and symmmetric, and for transitivity if
fio(zs) ~ fijo(xj) ~" fk,0(zk), then there exists m > i, j and n > j, k such that ¢, ;(z;) = ¥, j(z;) and
Un, () = ¥n k(x), and moreover there exists ¢ > n,m by I right directed, and therefore

Ve,i(xi) = VemWm,i(Ti) = YomWPm,j () = Ve (25) = Vet j(25) = YenVnk(®r) = Yo r(Tr)

and so f; o(x;) ~" fro(zk). So we have that ~' is an equivalence relation contained by all equivalence rela-
tions R containing ~q, and therefore we have ~'=~. So with the assumption that I is right directed we get
a nicer induced relation ~ on U;c;X; and we will use this to define a group structure on X.

Define multiplication on X as follows. For any 4,5 € I and x; € X;, x; € X; define f;(x;) * fj(z;) =
fiu(Wr,i(xi)n,;(x;)) where k € I such that k > ¢,j. Since I is right directed there exists such a k, since
each X; is a group the multiplication ¢y, ;(x;)¥r j(x;) makes sense as multiplication in X}, but we need to
show that the multiplication on X is well defined (i.e. the result is independent of what k you use and
is also independent of what entries in the equivalence class of fi(x;) and fj(x;) you use). Assume that
k. eI with k >4,j and ¢ > i,j and examine the two elements fi (Y i(z:)Vk ;(x;)), fo(wei(xi)e,;i(z4)).
Observe that there exists m > k, ¢ and so we have f, ¢y = fi and fi¥me = f¢ (proved last problem)
and note that by definition of the (f;)ier we know that fi(vx,i(z:)9k ;(x;)) is the equivalency class contain-

ing fr,o0(W¥r,i(z:i)¥r,;(x;)) and fo(1e,i(xi)be ;(x;)) is the equivalency class containing fo o(1e,qi(zi)we ;(x;)).



Observe that

Yo ke (Vr,i (T) Yk, (25)) = Vit (ks (20)) Y ke (Vk,5 (5)) = Y i(23)m, 5 (25)

(using the extra assumption that the family ¢ are group homomorphisms) and

Vim,e(Ve,i(2:)0e,5(25)) = Ym,e(Ve,i(20)) Ym0 (Ve (25)) = Ym,i (@) 0m, ().

Therefore ¥, i (Vr,i(Ti)Vk;(25)) = Yme(Ye,i(xi)e;(x;)) and so by the definition of ~ which we showed
above, this implies that fio(Yr,i(zi)Vr,j(2;)) ~ feo(Wei(zi)e(x;)) ie. that fi(vr.(x:)ve;(z;)) =
fe(ei(zi)e j(25)). Next we want to show that it is independent of the choice of entry in the equiva-
lency class (i.e. that we have defined multiplication between equivalency classes rather than between fixed
representatives of the equivalency classes). Assume f; o(x;) ~ fjo(z;) and fro(zk) ~ feo(ze), and we want
to show that fi(z;) * fr(zk) = fj(z;) * fe(z¢). That is, we want to show that fi, o(¥m,i(T:)Vmk(Tk)) ~
fr0(n j(2)¢n(xe)) where n > j,£ and m > i,k (using the previous fact that our choice of m and n
doesn’t matter). To see this, again by I right directed we can choose some t > m,n,i,j, k, £ such that
Pri(xi) = Y4 5(25) and Yy g (zx) = e e(xe). Thus we see that:

Ut (Umi (T6)Omoke (1)) = Ve i(@) ek (Tr) = Vo5 (25)Ve,0(20) = i (Yn,j (25)Un e(20)).

and so by the definition of ~ and % we have shown f;(x;) * fi(zx) = fj(x;) * fe(ze). So we have a well
defined binary operator *: X x X — X. Now we want to show that * has the required properties for group
multiplication (associativity, identity, inverses).

Associativity: Let z,y,z € X and so we want to show that (z % y) * z = x * (y * z). There exists 4, j, k € I,
x; € X;, xj € Xj, xp € Xy such that x = fi(z;), y = fu(zk), 2 = f;j(x;). Now since [ is right directed we can
choose t > 1, j, k (choose m > 4, j,n > j,k and t > m,n). Therefore by definition (zxy) = fi(¢rq:(z:)¥s ;(z;)),
and so since t > t, k we have

(wxy) * 2= fr(e,e(ei(wi) e j(05)) Ve (Tr)) = Fr(ei(wi) e, 5(25) ek (21))

by associativity of multiplication in the group X; (and by 1 ; the identity). Similarly yxz = fi(¢y ;(x;)e k(xk))
and

xx (y*2) = fr(Vei(@) e (U (@) k() = fe(ri(@i) e (@) k(xr))-

Therefore (z * y) x 2z = x % (y x z) for any z,y,z € X and so * is associative.

Identity: Let e = fi(e;) for some i € I, e; € X; the identity element. Assume for now that i is fixed,
and we will show that e is the multiplicative identity (moreover since ¢ is arbitrary and multiplicative
identities are unique this implies that f;(e;) = f;(e;) for all 4,5 € I, although we could also prove this
fact directly). Let x € X arbitrary, so there exists j € I such that « = f;(z;) for some z; € X;. So
choosing ¢t > i,j we have e x x = fi(¢4,(e;)ir j(x;)). However, since 1, ; is a group homomorphism we
have 1y ;(e;) = e; and so e x x = fi(¢y ;(x;)). Observe that f;o(x;) ~ fro(ts;(x;)) since t > t,j with
Ui (z5) = Yo, (x)) = ¢y ;(x). Therefore fi(i j(z;)) = f;i(z;) and so we have shown that e * z = .
Similarly,

rxe= fi(Yr;(x)0ri(e:) = fi(¥r(z5)) = 2.

So we have that e € X is an identity element (and thus it follows that it is the unique identity element).
Inverses: Fix 2 € X, and so there exists i € I such that = = fi(z;). Let y = f;(2; ") (where z; ! is
the inverse in X;). So, since ¢ > i,7 we see by definition of * that:

wxy = fi(ii(z)ii(z7 ") = filziz] ") = file) =e



(recall that e = f;(e;) for all ¢ € I') and

yxax = fi(ii(e; i) = file; 'ai) = files) =e.

So y acts as the inverse for z, and so we have shown that any element of X has an inverse z 1.

So we have shown that X is a group, so now we want to show X has the universal property (as a di-
rect limit of groups). We already gave set maps f; : X; — X such that f;¢;, = f; for all ¢ < j (by the
previous problem), next we will show that they are group homomorphisms. Observe that for any i € I and
x;,y; € X; we have that
filw) * filys) = filii(zi)¥ii(yi) = filzivi)

and so we see that f; : X; — X is a group homomorphism for all ¢ € I. Next assume we have a family
of group homomorphisms (g;)icr with g; : X; — H for all ¢ and g; o ¢;; = g¢; for all i < j. Therefore by
the previous problem, since the {X;} and {¢; ;} form a direct system as sets with direct limit X, by the
universal property there is a unique set map g : X — H such that (g;)ic;r = (g © fi)icr. Next we want to
show that g is a group homomorphism. First recall how we defined g, and next recall that for any z,y € X
there exists some z; € X;, x; € X; such that x = f;(z;) and y = f;(x;). Choose t > 4, j and so by definition
of ~ we have that z = f;(vr,i(2:)) and y = fi(¢r,;(x;)), and thus g(x) = g:(Vri(2:)) and g(y) = g¢(vr;(x;)).-
So since g; is a group homomorphism,

9(x)g(y) = gt(wt,i(xi))gt(¢t,j (CUJ)) = gt(d)t,i(iﬂi)wt,j (ﬂfj))

Observe that z xy = fi(¢r,i(zi)r,;(2;)) and so g(z xy) = ge(r,i(z:i)¢r,5(x;)) = g(z)g(y). Since z,y € X
arbitrary we have shown that ¢ is a group homomorphism. So we have shown existence of such a group
homomorphism g, and uniqueness follows from the uniqueness of g as a set map (if there exists another
group homomorphism h : X — H such that (g;)ic; = (ho fi)ic1, then by uniqueness from universal property
as a direct limit of sets this implies that h = g as set maps, and two group homomorphisms being equal as
set maps implies they are equal as group homomorphisms).

Therefore we have shown that X is a group and it satisfies the universal property for the direct system
of groups {X;}icr, {¥j}i<j, and thus this implies that X = limy X (i.e. X is the direct limit of X which is
unique up to group isomorphism). O



