
Matthew B. Carr Algebra II: HW 4

Propaganda. Let us briefly set up some notation. Let C be a category and (I,≤) a preordered set (or even better, some
small category).

(a) We shall denote R−mod by Rmod (and right R-modules by modR).
(b) We shall denote lim−→

(I,≤)
X by colimX. The mantra is “direct limits are colimits and inverse limits are limits.”

(c) By a constant (I,≤) or I-shaped diagram in C , we shall mean the functor F : (I,≤)→ C which sends every object
to one object of C and every arrow to the identity arrow. We often denote this by X where X is this object in C .

Remark. To show a functor F is exact, it is enough to show it preserves exact sequences X → Y → Z for any such exact
sequence. This implies (and is equivalent to) preserving short exact sequences since this then says that 0→ FA→ FB is
exact, FA→ FB → FC is exact and FB → FC → 0 is exact, so that 0→ FA→ FB → FC → 0 is exact. The converse
is obtained by sticking kernels and cokernels in the right places. It will be easier to deal with these shorter sequences.

Exercise (#1). Let C be a category and A be an abelian category. Then A C (and similarly A C op) is again an abelian
category.

Proof. The point is this: As with most interesting function spaces, we tend to pick up important properties of the codomain.
For instance, if X and Y are normed linear spaces with Y complete, then L(X,Y ) picks up the operator norm and is
complete with respect to it. In particular, we are allowed to compute things “pointwise.”

Denote F = A C . Let F,G ∈ A C and let η, τ ∈ HomF(F,G). Then η + τ
def= (ηX + τX)X∈C where ηX , τX ∈

HomA (FX,GX) and, therefore, we are permitted to add them in HomA (FX,GX) since A is additive. We assert that
this is a natural transformation F ⇒ G. Since composition is bilinear on components since A is additive, if f ∈ C is an
arrow, then Ff ◦ (η+ τ) = Ff ◦η+Ff ◦ τ = η ◦Gf + τ ◦Gf from naturality of η and τ and bilinearity. So this is a natural
transformation. Having defined addition pointwise (or, if you prefer to think about it this way, componentwise) on the
hom-sets, it is immediate that the additive identity 0 ∈ HomF(F,G) is the natural transformation which is the additive
identity 0 pointwise on each component. Moreover, given η ∈ HomF(F,G), −η def= (−ηX)X∈C is the inverse of η on each
component and therefore clearly also for η. Since we have defined addition pointwise, it is obviously associative because it
picks this up from associativity down in A . This proves that for every F,G ∈ F, HomF(F,G) is a group under the defined
operation. It is so obviously abelian that it scarcely merits mentioning.

We claim that composition is Z-bilinear in F under our addition. Let η, τ : F ⇒ G, and σ : G ⇒ H and consider
σ ◦ (nη +mτ) where n,m ∈ Z. Since we have defined everything pointwise, it suffices to check bilinearity point-by-point.
Consider the component at X ∈ C . Then we have σX ◦ (nηX + mτX) ∈ HomA (FX,HX)—hence, since A is abelian,
σX ◦ (nηX +mτX) = nσX ◦ ηX +mσX ◦ τX . Thus, composition is Z-bilinear.

We claim that there exists a zero-object in F. This is obvious. Fix 0 = 0A ∈ A a zero-object in A —this exists because
A is additive. The functor O : C → A which sends each object X ∈ C to 0 and each arrow f : X → Y to 0 ∈ HomA (0, 0).
Then there is clearly only one natural transformation in HomF(O, F ) and HomF(F,O) for any functor F ∈ F—the trivial
one.

Let F1, F2 ∈ F. Define F1⊕F2 for each X f−→ Y by (F1⊕F2)(f) = F1(f)⊕F2(f) where F1(f)⊕F2(f) : F1X ⊕F2X →
F1Y ⊕ F2Y is defined by the universal property of coproduct. Note that this exists since A is additive. Define a natural
transformation ηi : Fi ⇒ F1⊕F2 whose component at eachX ∈ C is the canonical map ηiX : FiX → F1X⊕F2X guaranteed
as part of the universal property of the coproduct. Note that the map F1f ⊕ F2f is the map induced by ηiY ◦ Fif for
i = 1, 2. Hence, it follows that for all X f−→ Y , ηiY ◦ Fif = (F1f ⊕ F2f) ◦ ηiX , from the universal property. Hence, ηi really
is a natural transformation for i = 1, 2. Thus, it follows by a trivial induction that F has finite coproducts. Similarly for
products,

∏
Fi is simply the pointwise product on the components. This proves that F is at least additive.

We shall show that F contains all cokernels—that F contains all kernels is analogous and the proof is omitted. For clarity
of presentation, we omit ⇒ for natural transformations. Let η : F → G be a natural transformation. For all X f−→ Y

g−→ Z
in C , we have TFCD:

FX FY FZ

CηX CηY CηZ

GX GY GZ

Ff

η

0

η

0

Fg

0

η

Cη(f) Cη(g)

Gf

kX kY

Gg

kZ

where each the dashed arrows are induced by the universal property of the cokernel (just follow the appropriate portions
of the diagram) and where kX : GX → CηX is the cokernel of the component ηX for each X ∈ C . This exists because this
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is now taking place in the abelian category A . In particular, uniqueness of such arrows forces Cη(g ◦ f) = Cη(g) ◦Cη(f).
In other words, the assignment f 7→ Cη(f) is functorial. Hence, Cη is a functor (since objects correspond to identity
arrows and conversely, we see this is enough). Let k : G → Cη be the natural transformation whose components are the
kX as above—that this is a natural transformation follows directly from the commutativity of the diagram above. We
assert that k : G → Cη is the cokernel of η. Once again, since we have defined everything pointwise, it suffices to check
point-by-point—towards this end, we note that each kX is a cokernel so this follows immediately because we have contrived
it to be so. However, we need to work this out in full detail, apparently, so let’s go through the motions. Suppose we have
TFCD in F:

H

Cη

F G

0

0

η

k

ξ

(1)

where 0 obviously denotes the trivial natural transformation. Opening up this picture on components (hence, why we
don’t really need to check) we have TFCD for each X f−→ Y in C :

FX FY

CηX CηY

GX GY

HX HY

0

0

Ff

η η

0

0

Cη(f)

Gf

ξ

kX

ξ

kY

Hf

where the dashed arrows are induced by the universal property of the cokernel by way of ξ : G→ H and 0: F → H—hence,
they are uniquely defined. They make every such diagram commute. It is therefore the case that the dashed arrows form
the unique natural transformation fitting into (1) making the diagram commute and hence that we really do have a
cokernel in F.

With our point-by-point computation mantra, it is obvious that the induced maps Coim f → Im f are isomorphisms.
Hence, A C is an abelian category. To see that A C op is an abelian category, note that we already showed that A C is an
abelian category for any category C . Hence, for all categories under consideration. �

Exercise (#7). Let J be a set. Then
⊕

J ,
∏
J : RmodJ → Rmod are exact functors.

Proof. We view J as a discrete category—in this case, J has objects consisting of its elements and its only morphisms
are identity morphisms. Note that Rmod contains all products and coproducts. By Exercise 1, RmodJ is an abelian
category.

We may as well note the following.

Lemma. Kernels, cokernels and images are what we expect them to be in Rmod.

Proof. Trivial. �

Let F1, F2, F3 ∈ RmodJ be such that we have an exact sequence F1
τ⇒F2

ε⇒F3. Unraveling the definition, this amounts
to an exact sequence in Rmod for each j ∈ J ,

F1(j) τj−→ F2(j) εj−→ F3(j)

Let us first consider the case of
⊕

J . We know how to describe direct sums in Rmod—they can be realized as the
direct sum of abelian groups with the component-wise R-action along with the inclusion maps of the direct summands
into the direct sum at its component. In this case,

⊕
εj is the map which sends an element (xj)j∈J ∈

⊕
J F2(j) to

(εj(xj))—as always with maps induced from direct sums, this is well-defined because only finitely many xj are nonzero.
It is also clearly an R-linear map. The kernel of the map is necessarily the set where the εj ’s simultaneously vanish. That
is, Ker

⊕
εj =

⊕
Ker εj . It is also obvious that Im

⊕
τj =

⊕
Im τj by elementary set-theoretic considerations. Since

Ker εj = Im τj for each j, it follows immediately that
⊕

J is exact.
The proof for the direct product is hardly different and is therefore omitted, as was suggested in recitation. The idea

is the same as before. �

2



Matthew B. Carr Algebra II: HW 4

Exercise (#8). Let (I,≤) be a right-directed, preordered set. Then colim: Rmod(I,≤) → Rmod is an exact functor.

Proof. I don’t think we’ve seen the existence of direct limits in Rmod yet, so we must justify their existence before
proceeding. This isn’t hard and we make it brief.
Lemma (Existence). The colimit of any (I,≤)-shaped diagram in Rmod exists.

Proof. For F : (I,≤) → Rmod, colimF is simply the quotient of
⊕

I F by the submodule Q generated by all elements
(xi) ∈

⊕
I F of the form (. . . , 0, . . . , 0, xi, 0 . . . , 0,−fji(xi), 0, . . .) where fji : F (i)→ F (j) is as guaranteed by the directed

system in Rmod obtained from the functor F (i.e., where i ≤ j). The maps of F (i) into this object are the natural ones:
The composite of the inclusion and canonical projection ιi : F (i) ↪→

⊕
I F →

⊕
I F/Q. Given a constant (I,≤)-shaped

diagram in Rmod, Y , say, with R-linear maps κj : F (j)→ Y , the universal property of the direct sum yields an R-linear
map f :

⊕
I F → Y such that f |F (i) = κi in the obvious sense. In particular, since κj(fji(xi)) = κi(xi), it must be that

Q ⊆ Ker f . Since f is constant on the fibers of the quotient map p :
⊕

I F →
⊕

I F/Q, it factors through p uniquely
(i.e., we obtain a unique R-linear map

⊕
I F/Q → Y ). It is clear that f ◦ ιi = κi. Conversely, if we have an R-linear

map h :
⊕

I F/Q→ Y which is a morphism of constant (I,≤)-shaped diagrams, then we obtain a map h ◦ p :
⊕

I F → Y
which, again as a result of the the universal property of the coproduct, induces a map f :

⊕
I F → Y . Running the same

argument through as above shows that f descends uniquely to an R-linear map h̃ :
⊕

I F/Q→ Y for which h̃ ◦ p = h ◦ p.
Since h is unique, h̃ = h. This proves that

⊕
I F/Q ≈ colimF . �

Consider (I,≤)-shaped diagrams in Rmod, (F, fji), (F ′, f ′ji) and (F ′′, f ′′ji)—here we have denoted the compatible maps
along with them—and suppose we are given an exact sequence F τ⇒F ′

ε⇒F ′′. We already know that
⊕

is an exact functor
from Exercise 7. We assert that we have TFCD for all i, j ∈ I with i ≤ j:⊕

F
⊕
F ′

⊕
F ′′

colimF colimF ′ colimF ′′

F (i) F ′(i) F ′′(i)

F (j) F ′(j) F ′′(j)

p

⊕τ ⊕ε

p
′

p
′′

h1

τi

fji f
′
ji

εi

f
′′
ji

τj εj

h2

We have obtained this from our construction of the colimit, the universal property of the direct sum applied to the
components τ (resp. ε) along with the canonical maps into the direct sum given by the universal property. The dashed
horizontal arrows are the unique ones induced by the universal property of the colimit. Note that each p is the unique
arrow guaranteed by the universal property of the coproduct which is induced by the maps into the colimit—this is
because we constructed the colimit as a quotient of the direct sum. Moreover, in this diagram, the horizontal arrows in
the topmost and both bottommost rows form an exact sequence as a direct consequence of the previous exercise and our
assumptions, respectively. The unnamed arrows into the colimits are the obvious ones. Now, since the top row is exact,
0 = p′′ ◦ ⊕ε ◦ ⊕τ = h2 ◦ h1 ◦ p. Since p surjects, this shows that Im h1 ⊆ Kerh2.

Conversely, suppose x ∈ Kerh2. Then x is a finite sum of elements in the images of F ′(i) → colimF ′ varying over i.
Pick representatives of this sum, say xin ∈ F ′(in) for finitely many n, so that x is the sum of the images of the xin in
colimF ′. By right-directedness of I, there exists j which dominates all elements witnessing this sum. Let y =

∑
f ′jin(xin)

so that y ∈ F ′(j). By R-linearity of the f ′ji and compatibility of the maps, the image of y in colimF ′ is x.
Now, εj(y) ∈ Ker(F ′′(j)→ colimF ′′) by exactness of the bottom row. Identify εj(y) with its image in

⊕
F ′′. By defini-

tion of the colimit and p′′, this means that εj(y) is an R-linear combination of elements of the form xin − f ′′jin(xin)—note
that we have implicitly lifted everything to

⊕
F ′′ in order to make sense of this sum. Since εj(y) ∈ F ′′(j), the sum

y =
∑
n xin − f ′′jim(xin) vanishes off of F ′′(j). Now, by the same argument we used before, we can push this sum forward

to obtain y′ ∈ F ′′(k) for which y′ ∈ Ker(F ′′(k)→ colimF ′′). But also

y′ =
∑
n

f ′′kin(xin)− f ′′kj(f ′′jin(xin)) =
∑
n

f ′′kin(xin)− f ′′kin(xin) = 0.

We assert 0 = f ′′kj(εj(y)). Recall that εj(y) =
∑
n xin − f ′′jin(xin) in the direct sum. It must be that terms not lying in

the inclusion F ′′(j)→
⊕
F ′′ cancel, so it follows immediately from the centered equation above that f ′′kj(εj(y)) = 0, since

equality is unambiguous. By commutativity of the diagram, this implies that εk(f ′kj(y)) = 0 so that f ′kj(y) ∈ Ker εk; hence,
there exists z ∈ F (k) such that τk(z) = f ′kj(y). But by commutativity of the diagram, this implies that h1([z]) ∈ Kerh2,
where [z] is the image of z in colimF , and furthermore that h1([z]) = x. Hence, Kerh2 = Im h1. Hence, the functor is
exact. �
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