ALGEBRA 2. PROBLEM SET 3 **Problem 1.** Let (I, \leq) be a preordered set such that $i \leq j$ for every $i, j \in I$. Let \mathcal{C} be a category and let $\mathfrak{X} = (\{X_i\}_{i \in I}; \{\varphi_{ji}\}_{i \leq j})$ be a direct system on (I, \leq) with values in \mathcal{C} . Prove that, for every $i \in I$, $\varinjlim \mathfrak{X}$ is isomorphic to X_i . Similarly let $\mathfrak{Y} = (\{Y_i\}_{i \in I}; \{\psi_{ij}\}_{i \leq j})$ be an inverse system over (I, \leq) with values in \mathcal{C} . Prove that $\varprojlim_{(I, \leq)} \mathfrak{Y}$ is isomorphic to Y_i , for every $i \in I$. (Hence, for questions regarding direct/inverse limits, we can assume that the preordered set is in fact partially ordered). **Problem 2.** Let (I, \leq) be a partially ordered set with a unique maximal element, say $i_0 \in I$. Again, let \mathfrak{X} be a direct system over (I, \leq) with values in \mathcal{C} . Prove that $\lim_{\substack{\longleftarrow \\ (I, \leq)}} \mathfrak{X}$ is isomorphic to X_{i_0} . Similarly, let \mathfrak{Y} be an inverse system. Prove that $\lim_{\substack{\longleftarrow \ (I, <)}} \mathfrak{Y}$ is isomorphic to Y_{i_0} . **Problem 3.** Let J be a set and let \mathcal{C} be a category. Assume that for every set of objects $\{X_j\}_{j\in J}$ of \mathcal{C} , the direct sum $\bigoplus_{j\in J} X_j$, and the direct product $\prod_{j\in J} X_j$ exist. Let \mathcal{C}^J be the product category and we view \bigoplus and \prod as functors: $$C^{J} \xrightarrow{\bigoplus} C$$ Let $F: \mathcal{C} \to \mathcal{C}^J$ be the canonical inclusion functor. That is, $F(X)_j = X$ for every $j \in J$ and $X \in \mathcal{C}$; and for every morphism $f: X \to Y$ in \mathcal{C} , $F(f)_j = f$ for every $j \in J$. Prove that the following two pairs are adjoint functors: $$\left(\bigoplus, F\right)$$ and $\left(F, \prod\right)$ **Problem 4.** Let $I = \{1, 2, 3, ...\}$ together with the usual order. Consider the following inverse system on I valued in \mathbf{Ab} , denoted by $\mathfrak{Z} = (\{Z_n\}_{n \in I}; \{\varphi_{nm}\}_{n \leq m})$: - $Z_n = \mathbb{Z}$ for every $n \in I$. - For every $n \le m$, the group homomorphism $\varphi_{nm}: Z_m \to Z_n$ is given by $\varphi_{nm}(x) = 3^{m-n}x$. Prove that $\lim_{\stackrel{\longleftarrow}{(I,<)}} \mathfrak{Z} = (0).$ **Problem 5.** Given a preordered set (I, \leq) , consider the category, $\operatorname{Cat}(I, \leq)$, whose objects are elements of I and for every $i, j \in I$, $\operatorname{Hom}_{\operatorname{Cat}(I, \leq)}(i, j)$ is a singleton, say $\{a(i, j)\}$, if $i \leq j$; and is empty if $i \not\leq j$. Verify that a direct (resp. inverse) system on (I, \leq) , valued in a category \mathcal{C} , is an object of the category of covariant (resp. contravariant) functors from $\operatorname{Cat}(I, \leq)$ to \mathcal{C} . Hence, we have a category of direct (resp. inverse) systems on (I, \leq) valued in \mathcal{C} , denoted as follows: $$\mathcal{C}^{(I,\leq)} := \mathbf{Func}\left(\mathrm{Cat}(I,\leq),\mathcal{C}\right)$$ category of direct systems $\mathcal{C}_{(I,\leq)} := \mathbf{Func}\left(\mathrm{Cat}(I,\leq)^{\mathrm{op}},\mathcal{C}\right)$ category of inverse systems **Problem 6.** Let \mathcal{C} be a category and (I, \leq) be a preordered set. For each $X \in \mathcal{C}$, we can define a direct system \mathfrak{X} where each $X_i = X$ and each $\psi_{ji} = \operatorname{Id}_X$. Prove that the direct limit (if exists) can be interpreted as a functor $\mathcal{C}^{(I,\leq)} \to \mathcal{C}$, and it is adjoint (left or right?) to the functor thus obtained $F: \mathcal{C} \to \mathcal{C}^{(I,\leq)}$. Obtain a similar assertion for the inverse limit. 1 **Problem 7.** Consider the inverse system of Problem 4 above, denoted there by \mathfrak{Z} . Let \mathfrak{Z}' be another inverse system over the same ordered set $I = \{1, 2, 3, \ldots\}$ valued in \mathbf{Ab} , where each $Z'_n = \mathbb{Z}/2\mathbb{Z}$ and all the morphisms are identities. Prove that the natural surjection $\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ is a morphism in the category of inverse systems $\mathbf{Ab}_{(I,\leq)}$. (This is one of the standard examples of the fact that inverse limit of surjections need not be a surjection.). **Problem 8.** Prove that the inverse limit of injective morphisms is injective. Prove that the direct limit of surjective morphisms is surjective. **Problem 9.** Let \mathfrak{X} be a direct system over a preordered set (I, \leq) valued in **Sets**. Let $X := \sqcup_{i \in I} X_i / \sim$ where the equivalence relation is: $$x \in X_i \sim \psi_{ji}(x) \in X_j$$ for every $i \leq j$ Prove that X is isomorphic to $\lim_{\stackrel{\longrightarrow}{(I,<)}} \mathfrak{X}$. **Problem 10.** With the set up of Problem 9 above, assume that I is right directed and each X_i has a structure of a group and each ψ_{ji} is a group homomorphism. Prove that X has a natural structure of a group which makes it isomorphic to the direct limit of \mathfrak{X} in the category of groups.