ALGEBRA 2. PROBLEM SET 4

Problem 1. Let C be an arbitrary category and let A be an abelian category. Prove that **Func** (C, A) (and similarly **Func** (C^{op}, A)) is again an abelian category.

Remark.– Many examples of abelian categories arise in this way. For example, categories of direct/inverse systems valued in \mathcal{A} (see Problem 5 of Set 3); presheaves of abelian groups over a topological space; category of complexes over \mathcal{A} . This one problem shows us how they are all abelian.

Problem 2. Let C be an additive category and let $\{X_i\}_{i \in I}$ be a set of objects of C such that their direct product exists in C. Prove that, for every $Y \in C$ we have isomorphisms (of abelian groups)

$$\operatorname{Hom}_{\mathcal{C}}\left(\prod_{i\in I} X_i, Y\right) \cong \bigoplus_{i\in I} \operatorname{Hom}_{\mathcal{C}}(X_i, Y)$$

where on the right-hand side, the direct sum is that of abelian groups.

Problem 3. Let C be an additive category such that for any set I and a set of objects $\{X_i\}_{i \in I}$, both $\bigoplus_{i \in I} X_i$ and $\prod_{i \in I} X_i$ exist in C. Prove that there is a natural transformation α of functors:

Problem 4. Assume C is an additive category where arbitrary direct sums and products exist. Further assume that direct sums and products are always isomorphic. Prove that every object in C is a zero object.

Problem 5. Let C be an additive category and let $f : X \to Y$ be a morphism in C. Write down a functor $C \to \mathbf{Ab}$ whose representability is equivalent to the existence of a kernel of f in C (the functor, if representable, will be represented by the kernel). Do the same exercise for the cokernel.

Problem 6. Let *I* be a set and let $\mathbb{Z}^{(I)}$ be the direct sum of abelian groups $\{X_i = \mathbb{Z}\}_{i \in I}$. Prove that $\operatorname{Hom}_{Ab}(\mathbb{Z}^{(I)}, -)$ is an exact functor $Ab \to Ab$.

In the problems below R is a non-zero ring with 1. And R-mod is the category of left R-modules.

Problem 7. Let J be a set. Prove that \bigoplus_{J} and \prod_{J} are exact functors R-mod^{$J} <math>\rightarrow$ R-mod. Here R-mod^J is the product category (it is abelian by Problem 1 above).</sup>

Problem 8. Let (I, \leq) be a right directed preordered set. Prove that $\lim_{\substack{(I, \leq) \\ (I, \leq)}} : R-\mathbf{mod}^{(I, \leq)} \to R-\mathbf{mod}$ is an

exact functor. Here, $R-\mathbf{mod}^{(I,\leq)}$ is the category of directed systems over (I,\leq) with values in the category $R-\mathbf{mod}$ (defined in Problem 5 of Set 3, and is abelian by Problem 1 above).

Problem 9. Let (I, \leq) be a preordered set. Prove that $\lim_{(I,\leq)} : R-\mathbf{mod}_{(I,\leq)} \to R-\mathbf{mod}$ is left exact, but not right exact.