ALGEBRA 2. PROBLEM SET 5

In all problems below, $\mathcal{A} = R - \mathbf{mod}$ is the category of modules over a commutative ring R (with $1 \neq 0$). We denote by $\mathbb{K}^{\bullet}(\mathcal{A})$ the category of cochain complexes of \mathcal{A} .

Problem 1. Consider the following diagram in \mathcal{A} with exact rows and commuting squares.

$$\begin{array}{c|c} M & \overset{u}{\longrightarrow} N & \overset{v}{\longrightarrow} P \\ f & g & h \\ f & y' & & h' \\ M' & \overset{u'}{\longrightarrow} N' & \overset{v'}{\longrightarrow} P' \end{array}$$

- (1) Prove that, if u', f, h are injective, then g is injective.
- (2) Prove that, if v, f, h are surjective, then g is surjective.
- (3) Prove that, if g is injective and f, v are surjective, then h is injective.
- (4) Prove that, if g is surjective and h, u' are injective, then f is surjective.

Problem 2. Prove the analogue of Theorem 16.3, page 3-4, for projective resolutions.

Problem 3. Consider the subcategory of $\mathbb{K}^{\bullet}(\mathcal{A})$ consisting of exact complexes (i.e, C^{\bullet} such that $H^n(C^{\bullet}) = 0$ for every $n \in \mathbb{Z}$). Give an example to illustrate that this subcategory is not closed under taking kernels.

Problem 4. Five lemma. Consider the following commutative diagram with exact rows.

- (1) Prove that if f_2, f_4 are injective and f_1 is surjective, then f_3 is injective.
- (2) Prove that if f_2, f_4 are surjective and f_5 is injective, then f_3 is surjective.

Hence, if f_1, f_2, f_4, f_5 are isomorphisms, then so is f_3 .

Problem 5. Let C^{\bullet} and D^{\bullet} be two cochain complexes of *R*-modules. Let $\alpha^{\bullet} : C^{\bullet} \to D^{\bullet}$ be a morphism. Define:

- $C[1]^{\bullet} \in \mathbb{K}^{\bullet}(\mathcal{A})$ is a complex with $C[1]^n = C^{n+1}$ and $d^n_{C[1]} = -d^{n+1}_C$, for every $n \in \mathbb{Z}$.
- $\operatorname{Cone}(\alpha)$ is the following complex:
 - For every $n \in \mathbb{Z}$, $\operatorname{Cone}(\alpha)^n = C^{n+1} \oplus D^n$.
 - For every $n \in \mathbb{Z}$, the differential, denoted by D^n below, is given by the following expression, for every $x \in C^{n+1}$ and $y \in D^n$,

$$D^{n}(x,y) = (-d_{C}^{n+1}(x), d_{D}^{n}(y) - \alpha^{n+1}(x))$$

- (1) Verify that $Cone(\alpha)$ is a complex (i.e, $D \circ D = 0$).
- (2) Prove that we have the following short exact sequence of cochain complexes.

$$0 \to D^{\bullet} \to \operatorname{Cone}(\alpha) \to C^{\bullet}[1] \to 0$$

- (3) Prove that α^{\bullet} is null homotopic if, and only if, the sequence above is split.
- (4) Prove that $H^n(\alpha)$ is an isomorphism, for every $n \in \mathbb{Z}$ if, and only if $H^n(\text{Cone}(\alpha)) = 0$ for every $n \in \mathbb{Z}$.