ALGEBRA 2. PROBLEM SET 6

In all problems below, R is a commutative ring (with $1 \neq 0$). $R-\mathbf{mod}$ is the category of R-modules.

Problem 1. Let $P \in R$ -mod. Prove that P is projective if, and only if, there exists $P' \in R$ -mod such that $P \oplus P'$ is a free *R*-module.

Problem 2. Let $p \in R$ be such that $p^2 = p$. Prove that the ideal Rp generated by p is a projective R-module.

Problem 3. For a $P \in R$ -mod, prove that the following conditions are equivalent.

- (1) P is projective.
- (2) For every $M \in R-\mathbf{mod}$ and $k \ge 1$, $\operatorname{Ext}_{R}^{k}(P, M) = 0$. (3) For every $M \in R-\mathbf{mod}$, $\operatorname{Ext}^{1}(P, M) = 0$.

Problem 4. Consider the following two short exact sequences of R-modules, where P_1 and P_2 are projective.

Prove that $P_1 \oplus N_2$ is isomorphic to $P_2 \oplus N_1$.

Problem 5. Let R = K[x, y, z] be the polynomial ring in three variables over a field K, and let M = K with the natural *R*-action (see Lecture 18, pages 5-6). Prove that the sequence of morphisms written at the end of Lecture 18 page 6, is a free resolution of the R-module M.

Problem 6. Prove that an arbitrary direct sum of projective modules is projective. Prove that an arbitrary direct product of injective modules is injective.

Problem 7. Let $N \in \mathbb{Z}, N \geq 2$. Prove that $\mathbb{Z}/N\mathbb{Z}$ is injective as an $\mathbb{Z}/N\mathbb{Z}$ module. (Warning: the ring under consideration is not a domain, so Corollary 17.2 page 4 does not apply.)

Problem 8. Give an example of a domain R and an R-module M, such that M is divisible but not injective.

Problem 9. Assume that R is injective as an R-module, and a domain. Prove that R is a field.

Problem 10. For $M, N \in R$ -mod and $Q \in Ab$, prove that we have an isomorphism of R-modules:

 $\operatorname{Hom}_{R}(M, \operatorname{Hom}_{\mathbb{Z}}(N, Q)) \cong \operatorname{Hom}_{\mathbb{Z}}(M \otimes_{R} N, Q)$

where, recall that, for an R-module X, and an abelian group Y, we defined an R-module structure on $\operatorname{Hom}_{\mathbb{Z}}(X, Y)$ by:

 $(r \cdot \xi)(x) = \xi(rx)$ for every $r \in R, x \in X, \xi \in \operatorname{Hom}_{\mathbb{Z}}(X, Y)$.