ALGEBRA 2. PROBLEM SET 7

In all problems below, R is a commutative ring (with $1 \neq 0$). R-mod is the category of R-modules.

The problem below is given to review some of the results from Algbera I. You can consult, for example, Lectures 30, 31 of https://people.math.osu.edu/gautam.42/F17/algebra.html

Problem R. Let $S \subset R$, $1 \in S$, $0 \notin S$ be a multiplicatively closed set. Let M be an R-module.

- (1) For every ideal $\mathfrak{a} \subset R$, prove that we have an isomorphism: $(R/\mathfrak{a}) \otimes_R M \cong M/\mathfrak{a}M$.
- (2) Prove that $S^{-1}R \otimes_R M \cong S^{-1}M$.
- (3) Prove that for every short exact sequence of R-modules: $0 \to M_1 \to M_2 \to M_3 \to 0$, the following sequence is again exact.

$$0 \to S^{-1}M_1 \to S^{-1}M_2 \to S^{-1}M_3 \to 0$$

Problem 1. Let R be a principal ideal domain and let $a \in R$, $a \neq 0$. Prove that, for every R-module N, we have an isomorphism $\operatorname{Ext}^{1}_{R}(R/(a), N) \cong N/aN$.

Problem 2. Let R be an integral domain. Let K be its field of fractions. In this problem, we view a K-vector space V as an R-module, via restricting the scalars $R \subset K$.

(1) For an *R*-module M, let M_{tor} be defined as the set of torsion elements of M:

 $M_{\text{tor}} = \{x \in M : a.x = 0 \text{ for some non-zero } a \in R\}$

Prove that $M_{\text{tor}} \otimes_R K = \{0\}$, and $M \otimes_R K \cong (M/M_{\text{tor}}) \otimes_R K$.

- (2) Let M be a torsion-free R-module. Prove that the natural map $M = M \otimes_R R \to M \otimes_R K$ is injective. (*Hence*, M is an R-submodule of a K vector space.). If M is both torsion-free and divisible, prove that this map is an isomorphism.
- (3) Prove that every K-vector space V is a flat R-module.

Problem 3. Let R be an arbitrary commutative ring. Assume that there is a non-zero divisor $a \in R$; and $b \in R$ which is a non-zero divisor in R/(a). Prove that the following is a projective resolution of M = R/(a, b).

$$\begin{pmatrix}
b \\
-a
\end{pmatrix} (a \ b)$$

$$0 \longrightarrow R \longrightarrow R \oplus R \oplus R \longrightarrow R \longrightarrow 0$$

Problem 4. Use Problem 3, to compute $\operatorname{Ext}_{R}^{\bullet}(M, N)$ for the following cases.

(1) $R = \mathbb{Z}[x], M = N = \mathbb{Z}/2\mathbb{Z} = \mathbb{Z}[x]/(2, x).$

Bonus. For each element of $\operatorname{Ext}_{R}^{1}(M, N)$, with R, M, N as in the line above, write the corresponding short exact sequence of $\mathbb{Z}[x]$ -modules: $0 \to N \to X \to M \to 0$.

(2) R = K[x, y] where K is any field, and M = N = K.

Problem 5. Let $R = \mathbb{Z}/4\mathbb{Z}$ and $M = \mathbb{Z}/2\mathbb{Z}$ with the natural *R*-action. Compute $\operatorname{Ext}_{R}^{\bullet}(M, M)$.

Problem 6. Assume that we have a short exact sequence of R-modules, where F is a flat R-module: $0 \to N \to M \to F \to 0$. Prove that, for every R-module E, the following sequence is exact: $0 \to N \otimes E \to M \otimes E \to F \otimes E \to 0$.

Hint for problem 6: take a projective module P, with a surjective map $P \rightarrow E$. Let K be the kernel of this surjection. Draw a snake lemma-style cartoon where you tensor the given short exact sequence with K for the top row and P for the bottom row.

Problem 7. Again, assume that there is a short exact sequence of R-modules, where F is a flat R-module: $0 \to F_1 \to F_2 \to F \to 0$. Prove that F_1 is flat if, and only if F_2 is flat.

Hint for problem 7: any given injective morphism $A \to B$ will give rise to a snake-lemma-type picture, when tensored with the given short exact sequence, just like in problem 6 above.