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Many people think that mathematical ideas are static. They think that the
ideas tbriginated at some time in the historical past and remain unchanged for
all future times. There are good reasons for such a feeling. After all, the formula
for the area of a circle was 772 in Euclid’s day and at the present time is still 772
But to one who knows mathematics from the inside, the subject has rather the
feeling of a living thing. It grows daily by the accretion of new information, it
changes daily by regarding itself and the world from new vantage points, it
maintains a regulatory balance by consigning to the oblivion of irrelevancy a
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fraction of its past accomplishments.

The purpose of this essay is to illustrate this process of growth. We select
one mathematical object, the gamma function, and show how it grew in concept
and in content from the time of Euler to the recent mathematical treatise of
Bourbaki, and how, in this growth, it partook of the general development of
mathematics over the past two and a quarter centuries. Of the so-called “higher
mathematical functions,” the gamma function is undoubtedly the most funda-
mental. It is simple enough for juniors in college to meet but deep enough to
have called forth contributions from the finest mathematicians. And it is suffi-
ciently compact to allow its profile to be sketched within the space of a brief
essay.

The year 1729 saw the birth of the gamma function in a correspondence be-
tween a Swiss mathematician in St. Petersburg and a German mathematician
in Moscow. The former: Leonhard Euler (1707-1783), then 22 years of age, but
to become a prodigious mathematician, the greatest of the 18th century. The
latter: Christian Goldbach (1690—-1764), a savant, a man of many talents and
in correspondence with the leading thinkers of the day. As a mathematician he
was something of a dilettante, yet he was a man who bequeathed to the future
a problem in the theory of numbers so easy to state and so difficult to prove that
even to this day it remains on the mathematical horizon as a challenge.

The birth of the gamma function was due to the merging of several mathe-
matical streams. The first was that of interpolation theory, a very practical
subject largely the product of English mathematicians of the 17th century but
which all mathematicians enjoyed dipping into from time to time. The second
stream was that of the integral calculus and of the systematic building up of the
formulas of indefinite integration, a process which had been going on steadily
for many years. A certain ostensibly simple problem of interpolation arose and
was bandied about unsuccessfully by Goldbach and by Daniel Bernoulli (1700—
1784) and even earlier by James Stirling (1692-1770). The problem was posed to
Euler. Euler announced his solution to Goldbach in two letters which were to
be the beginning of an extensive correspondence which lasted the duration of
Goldbach’s life. The first letter dated October 13, 1729 dealt with the interpola-
tion problem, while the second dated January 8, 1730 dealt with integration
and tied the two together. Euler wrote Goldbach the merest outline, but within
a year he published all the details in an article De progressionibus transcendent-
ibus seu quarum termini generales algebraice dari nequeunt. This article can now
be found reprinted in Volume I14 of Euler’s Opera Omnia.

,Since the interpolation problem is the easier one, let us begin with it. One
of the simplest sequences of integers which leads to an interesting theory is 1,
142, 14243, 1424344, - - - . These are the triangular numbers, so called
because they represent the number of objects which can be placed in a triangular
array of various sizes. Call the nth one T,. There is a formula for T, which is
learned in school algebra: T, =%4n(n+1).

What, precisely, does this formula accomplish? In the first place, it simplifies
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computation by reducing a large number of additions to three fixed operations:
one of addition, one of multiplication, and one of division. Thus, instead of add-
ing the first hundred integers to obtain T}, we can compute Tygo=2%(100)(10041)
=5050. Secondly, even though it doesn’t make literal sense to ask for, say, the
sum of the first 5% integers, the formula for T, produces an answer to this. For
whatever it is worth, the formula yields T5;=3%(5%)(54+1)=17%. In this way,
the formula extends the scope of the original problem to values of the variable
other than those for which it was originally defined and solves the problem of
interpolating between the known elementary values.

This type of question, one which asks for an extension of meaning, cropped
up frequently in the 17th and 18th centuries. Consider, for instance, the algebra
of exponents. The quantity a™ is defined initially as the product of # successive
a’s. This definition has meaning when m is a positive integer, but what would a5
be? The product of 5} successive a’s? The mysterious definitions a®=1, am/»
=</am, a™=1/a™ which solve this enigma and which are employed so fruit-
fully in algebra were written down explicitly for the first time by Newton in
1676. They are justified by a utility which derives from the fact that the defini-
tion leads to continuous exponential functions and that the law of exponents
a™-a*=a™*" becomes meaningful for all exponents whether positive integers or
not.
Other problems of this type proved harder. Thus, Leibnitz introduced the
notation d* for the nth iterate of the operation of differentiation. Moreover, he
identified d—! with [ and d—* with the iterated integral. Then he tried to breathe
some sense into the symbol d» when # is any real value whatever. What, indeed,
is the 53th derivative of a function? This question had to wait almost two cen-
turies for a satisfactory answer.

THE FACTORIALS

n: 1 2 3 4 5 6 7 8
nl: 1 2 6 24 120 720 5040 40,320

Fic. 1

INTELLIGENCE TEST

Question: What number should be inserted in the lower line half way between the upper 5
and 6?
Euler’s Answer: 287.8852 - - - . Hadamard’s Answer: 280.3002 - - - .

But to return to our sequence of triangular numbers. If we change the plus
signs to multiplication signs we obtain a new sequence:1,1-2,1:2.3, - - - . This
is the sequence of factorials. The factorials are usually abbreviated 1!, 2!, 31, - - -
and the first five are 1, 2, 6, 24, 120. They grow in size very rapidly. The number
100! if written out in full would have 158 digits. By contrast, T19o=5050 has a
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mere four digits. Factorials are omnipresent in mathematics; one can hardly
open a page of mathematical analysis without finding it strewn with them. This
being the case, is it possible to obtain an easy formula for computing the fac-
torials? And is it possible to interpolate between the factorials? What should
53! be? (See Fig. 1.) This is the interpolation problem which led to the gamma
function, the interpolation problem of Stirling, of Bernoulli, and of Goldbach.
As we know, these two problems are related, for when one has a formula there
is the possibility of inserting intermediate values into it. And now comes the
surprising thing. There is no, in fact there can be, no formula for the factorials
which is of the simple type found for T%,. This is implicit in the very title Euler
chose for his article. Translate the Latin and we have On transcendental progres-
sions whose general term cannot be expressed algebraically. The solution to factorial
interpolation lay deeper than “mere algebra.” Infinite processes were required.

In order to appreciate a little better the problem confronting Euler it is use-
ful to skip ahead a bit and formulate it in an up-to-date fashion: find a reason-
ably simple function which at the integers 1, 2, 3, - - - takes on the factorial
values 1, 2, 6, - - - . Now today, a function is a relationship between two sets of
numbers wherein to a number of one set is assigned a number of the second set.
What is stressed is the relationship and not the nature of the rules which serve to
determine the relationship. To help students visualize the function concept in
its full generality, mathematics instructors are accustomed to draw a curve full
of twists and discontinuities. The more of these the more general the function is
supposed to be. Given, then, the points (1,1), (2, 2), (3, 6), (4, 24), - - - and
adopting the point of view wherein “function” is what we have just said, the
problem of interpolation is one of finding a curve which passes through the given
points. This is ridiculously easy to solve. It can be done in an unlimited number
of ways. Merely take a pencil and draw some curve—any curve will do—which
passes through the points. Such a curve automatically defines a function which
solves the interpolation problem. In this way, too free an attitude as to what
constitutes a function solves the problem trivially and would enrich mathe-
matics but little. Euler’s task was different. In the early 18th century, a function
was more or less synonymous with a formula, and by a formula was meant an
expression which could be derived from elementary manipulations with addition,
subtraction, multiplication, division, powers, roots, exponentials, logarithms,
differentiation, integration, infinite series, <.e., one which came from the ordinary
processes of mathematical analysis. Such a formula was called an expressio
analytica, an analytical expression. Euler’s task was to find, if he could, an
analytical expression arising naturally from the corpus of mathematics which
would yield factorials when a positive integer was inserted, but which would
still be meaningful for other values of the variable.

It is difficult to chronicle the exact course of scientific discovery. This is
particularly true in mathematics where one traditionally omits from articles
and books all accounts of false starts, of the initial years of bungling, and where
one may develop one’s topic forward or backward or sideways in order to heighten
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the dramatic effect. As one distinguished mathematician put it, a mathematical
result must appear straight from the heavens as a deus ex machina for students
to verify and accept but not to comprehend. Apparently, Euler, experimenting
with infinite products of numbers, chanced to notice that if # is a positive integer,

o G G =G Al

Leaving aside all delicate questions as to the convergence of the infinite product,
the reader can verify this equation by cancelling out all the common factors
which appear in the top and bottom of the left-hand side. Moreover, the left-
hand side is defined (at least formally) for all kinds of # other than negative
integers. Euler noticed also that when the value #=3 is inserted, the left-hand
side yields (after a bit of manipulation) the famous infinite product of the Eng-
lishman John Wallis (1616-1703):

@ (2-2) (4-4) <6°6> <8-8) /2
1-3)\3-5/\5.7/\7-9 -
With this discovery Euler could have stopped. His problem was solved.

Indeed, the whole theory of the gamma function can be based on the infinite
product (1) which today is written more conventionally as

. ml(m + 1)»
lim .
moe (n+1D(m+2) - (n+m)

However, he went on. He observed that his product displayed the following
curious phenomenon: for some values of #, namely integers, it yielded integers,
whereas for another value, namely #=1%, it yielded an expression involving .
Now 7 meant circles and their quadrature, and quadratures meant integrals,
and he was familiar with integrals which exhibited the same phenomenon. It
therefore occurred to him to look for a transformation which would allow him to
express his product as an integral.

He took up the integral [gx°(1 —x)*dx. Special cases of it had already been
discussed by Wallis, by Newton, and by Stirling. It was a troublesome integral
to handle, for the indefinite integral is not always an elementary function of x.
Assuming that # is an integer, but that e is an arbitrary value, Euler expanded
(1 —x)* by the binomial theorem, and without difficulty found that

3

1 1.2 . o o n
4 f x2(1 — x)*dx = .
® 0 ( ) (e+De+2)---(e+n+1)
Euler’s idea was now to isolate the 1-2 - - - # from the denominator so that he

would have an expression for ! as an integral. He proceeds in this way. (Here
we follow Euler's own formulation and nomenclature, marking with an * those
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formulas which occur in the original paper. Euler wrote a plain [ for f3.) He
substituted f/g for ¢ and found

' gt 1:2v-en
5 1lo(1 — x)ndx = ) .
(%) j;x (1 — 2)ndzx fHm+0e(f+(f+2¢8 - (f+ny
And so,
1:2---n F4 -+ 1)g
o = flad — x)n,
© F+o9¢+29---(F+nyg g fx x(1 — x)

He observed that he could isolate the 1-2 - - - # if he set f=1 and g=0 in the
left-hand member, but that if he did so, he would obtain on the right an indeter-
minate form which he writes quaintly as

f 20dx(1 — x)»

Qntt

(n*

He now proceeded to find the value of the expression (7)*. He first made the
substitution x¢/¢+9 in place of x. This gave him

(8)* g 21 gy
f+g
in place of dx and hence, the right-hand member of (6)* becomes
1 )
) f+ (n+1)g f 8 gn(l — ol G+,
g fte

Once again, Euler made a trial setting of f=1, g=0 having presumably re-
duced this integral first to

1 1/1 — golF+o)\n
(10) f4 k1 ( )dx,
F+om Jo\g/(f+ o)
and this yielded the indeterminate
1 — x0)»
(1)* f dx(Tx)-.

He now considered the related expression (1 —x?)/32, for vanishing 2. He differ-
entiated the numerator and denominator, as he says, by a known (I’'Hospital’s)
rule and obtained

—x*dzlx
dz

(12)* (lx = log %),

which for 2=0 produced —Ix. Thus,
(13)* 1—-29/0=—Ix
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and
(14)* 1 — x%7/0n = (—Ix)»,
He therefore concluded that

(15) nl = f (= log )rdz.

This gave him what he wanted, an expression for #! as an integral wherein values
other than positive integers may be substituted. The reader is encouraged to
formulate his own criticism of Euler’s derivation.

Students in advanced calculus generally meet Euler’s integral first in the
form

(16) I'(z) = f Nl o= 271828 - - .
0

This modification of the integral (15) as well as the Greek I' is due to Adrien
Marie Legendre (1752-1833). Legendre calls the integral (4) with which Euler
started his derivation the first Eulerian integral and (15) the second Eulerian
integral. The first Eulerian integral is currently known as the Beta function and
is now conventionally written

an B(m, n) = f l:Jc"“l(l — x)*"dx.

With the tools available in advanced calculus, it is readily established (how
easily the great achievements of the past seem to be comprehended and dupli-
cated!) that the integral possesses meaning when x>0 and thus yields a certain
function I'(x) defined for these values. Moreover,

(18) T'(n+ 1) = n!
whenever # is a positive integer.* It is further established that for all x>0
(19) «T'(x) = T'(x + 1).

This is the so-called recurrence relation for the gamma function and in the
years following Euler it plays, as we shall see, an increasingly important role
in its theory. These facts, plus perhaps the relationship between Euler's two
types of integrals

(20) B(m, n) = T(m)T'(n)/T(m + n)
and the all important Stirling formula

* Legendre's notation shifts the argument. Gauss introduced a notation n(x) free of this defect.
Legendre’s notation won out, but continyes to plague many people. The notations T, , and ! can
all be found today.
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(21) T'(x) ~ ezx7~124/(27),

which gives us a relatively simple approximate expression for I'(x) when x is
large, are about all that advanced calculus students learn of the gamma func-
tion. Chronologically speaking, this puts them at about the year 1750. The play
has hardly begun.

Just as the simple desire to extend factorials to values in between the integers
led to the discovery of the gamma function, the desire to extend it to negative
values and to complex values led to its further development and to a more pro-
found interpretation. Naive questioning, uninhibited play with symbols may
have been at the very bottom of it. What is the value of (—53%)!? What is the
value of v/(—1)!? In the early years of the 19th century, the action broadened
and moved into the complex plane (the set of all numbers of the form x4y,
where 2=+/(—1)) and there it became part of the general development of the
theory of functions of a complex variable that was to form one of the major
chapters in mathematics. The move to the complex plane was initiated by Karl
Friedrich Gauss (1777-1855), who began with Euler’s product as his starting
point. Many famous names are now involved and not just one stage of action
but many stages. It would take too long to record and describe each forward
step taken. We shall have to be content with a broader picture.

Three important facts were now known: Euler’s integral, Euler’s product,
and the functional or recurrence relationship xI'(x) =T'(x+1), x>0. This last
is the generalization of the obvious arithmetic fact that for positive integers,
(n+1)n!=(n-+41)! It is a particularly useful relationship inasmuch as it enables
us by applying it over and over again to reduce the problem of evaluating a fac-
torial of an arbitrary real number whole or otherwise to the problem of evaluat-
ing the factorial of an appropriate number lying between 0 and 1. Thus, if we
write # =43 in the above formula we obtain (4341)!=5%(4%)! If we could only
find out what (431)!is, then we would know that (5%)!is. This process of reduc-
tion to lower numbers can be kept up and yields

(22) (S9! = 3/2)(5/2)(7/2)(9/2)(11/2)(1/2)!

and since we have (3)!=2%+/7 from (1) and (2), we can now compute our answer.
Such a device is obviously very important for anyone who must do calcula-
tions with the gamma function. Other information is forthcoming from the
recurrence relationship. Though the formula (z41)n!=(n+1)! as a condensa-
tion of the arithmetic identity (z+1)-1-2 -..%=1:2---#n-(r+1) makes
sense only for n=1, 2, etc., blind insertions of other values produce interesting
things. Thus, inserting #=0, we obtain 0!=1. Inserting successively #= —5%,
n=—4%, . .. and reducing upwards, we discover

(23) (=591 = 2/1)(=2/1)(—2/3)(—2/5)(—2/T)(—2/9)(1/2)!

Since we already know what (3)! is, we can compute (—5%)! In this way the
recurrence relationship enables us to compute the values of factorials of negative
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numbers.

Turning now to Euler’s integral, it can be shown that for values of the vari-
able less than 0, the usual theorems of analysis do not suffice to assign a mean-
ing to the integral, for it is divergent. On the other hand, it is meaningful and
yields a value if one substitutes for x any complex number of the form a-bi
where a>0. With such substitutions the integral therefore yields a complex-
valued function which is defined for all complex numbers in the right-half of the
complex plane and which coincides with the ordinary gamma function for real
values. Euler’s product is even stronger. With the exception of 0, —1, —2, - - -
any complex number whatever can be inserted for the variable and the infinite
product will converge, yielding a value. And so it appears that we have at our
disposal a number of methods, conceptually and operationally different for ex-
tending the domain of definition of the gamma function. Do these different
methods yield the same result? They do. But why?

The answer is to be found in the notion of an analytic function. This is the
focal point of the theory of functions of a complex variable and an outgrowth
of the older notion of an analytical expression. As we have hinted, earlier mathe-
matics was vague about this notion, meaning by it a function which arose in a
natural way in mathematical analysis. When later it was discovered by J. B. J.
Fourier (1768-1830) that functions of wide generality and functions with un-
pleasant characteristics could be produced by the infinite superposition of ordi-
nary sines and cosines, it became clear that the criterion of “arising in a natural
way” would have to be dropped. The discovery simultaneously forced a broad-
ening of the idea of a function and a narrowing of what was meant by an analytic
function.

Analytic functions are not so arbitrary in their behavior. On the contrary,
they possess strong internal ties. Defined very precisely as functions which
possess a complex derivative or equivalently as functions which possess power
series expansions ao+a:(z—2o) +as(z—20)2+ - - - they exhibit the remarkable
phenomenon of “action at a distance.” This means that the behavior of an
analytic function over any interval no matter how small is sufficient to deter-
mine completely its behavior everywhere else; its potential range of definition
and its values are theoretically obtainable from this information. Analytic func-
tions, moreover, obey the principle of the permanence of functional relation-
ships; if an analytic function satisfies in some portions of its region of definition
a certain functional relationship, then it must do so wherever it is defined.
Conversely, such a relationship may be employed to extend its definition to
unknown regions. Our understanding of the process of analytic continuation, as
this phenomenon is known, is based upon the work of Bernhard Riemann
(1826-1866) and Karl Weierstrass (1815-1897). The complex-valued function
which results from the substitution of complex numbers into Euler’s integral is
an analytic function. The function which emerges from Euler’s product is an
analytic function. The recurrence relationship for the gamma function if satis-
fied in some region must be satisfied in any other region to which the function



858 LEONHARD EULER'S INTEGRAL [December

can be “continued” analytically and indeed may be employed to effect such ex-
tensions. All portions of the complex plane, with the exception of the values
0, —1, —2, - - - are accessible to the complex gamma function which has be-
come the unique, analytic extension to complex values of Euler’s integral (see
Fig. 3).

THE GAMMA FUNCTION

| |
i /.
V. \

AL

F1G. 2*

Po understand why there should be excluded points observe that I'(x)
=I'(x+1)/x, and as x approaches 0, we obtain I'(0) =1/0. This is + © or — «
depending whether 0 is approached through positive or negative values. The

* From: H. T. Davis, Tables of the Higher Mathematical Functions, vol. I, Bloomington,
Indiana, 1933.
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functional equation (19) then, induces this behavior over and over again at
each of the negative integers. The (real) gamma function is comprised of an
infinite number of disconnected portions opening up and down alternately. The
portions corresponding to negative values are each squeezed into an infinite
strip one unit in width, but the major portion which corresponds to positive %
and which contains the factorials is of infinite width (see Fig. 2). Thus, there are
excluded points for the gamma function at which it exhibits from the ordinary
(real variable) point of view a somewhat unpleasant and capricious behavior.

THE ABSOLUTE VALUE OF THE COMPLEX GAMMA FUNCTION, EXHIBITING THE POLES AT
THE NEGATIVE INTEGERS
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But from the complex point of view, these points of singular behavior (singular
in the sense of Sherlock Holmes) merit special study and become an important
part of the story. In pictures of the complex gamma function they show up as an
infinite row of “stalagmites,” each of infinite height (the ones in the figure are
truncated out of necessity) which become more and more needlelike as they go
out to infinity (see Fig. 3). They are known as poles. Poles are points where the
function has an infinite behavior of especially simple type, a behavior which is
akin to that of such simple functions as the hyperbola y=1/x at x=0 or of
y=tan x at x=7/2. The theory of analytic functions is especially interested

* From: E. Jahnke and F. Emde, Tafeln hoherer Funktionen, 4th ed., Leipzig, 1948.
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in singular behavior, and devotes much space to the study of the singularities.
Analytic functions possess many types of singularity but those with only poles
are known as meromorphic. There are also functions which are lucky enough to
possess no singularities for finite arguments. Such functions form an elite and
are known as entire functions. They are akin to polynomials while the mero-
morphic functions are akin to the ratio of polynomials. The gamma function is
meromorphic. Its reciprocal, 1/T'(x), has on the contrary no excluded points.
There is no trouble anywhere. At the points 0, —1, —2, - + - it merely becomes
zero. And the zero value which occurs an infinity of times, is strongly reminis-
cent of the sine.

In the wake of the extension to the complex many remarkable identities
emerge, and though some of them can and were obtained without reference to
complex variables, they acquire a far deeper and richer meaning when regarded
from the extended point of view. There is the reflection formula of Euler

(24) T()IT(1 — 2) = «/sin 2.

It is readily shown, using the recurrence relation of the gamma function, that
the product T'(2)I'(1 —3) is a periodic function of period 2; but despite the fact
that sin 7z is one of the simplest periodic functions, who could have anticipated
the relationship (24)? What, after all, does trigonometry have to do with the
sequence 1, 2, 6, 24 which started the whole discussion? Here is a fine example
of the delicate patterns which make the mathematics of the period so magical.
From the complex point of view, a partial reason for the identity lies in the
similarity between zeros of the sine and the poles of the gamma function.
There is the duplication formula

(25) T(22) = (2w)~1/2227120 ()T (2 + 3)

discovered by Legendre and extended by Gauss in his researches on the hyper-
geometric function to the 'multiplication formula

(26) TI'(n2) = (27)1/2(1‘”%"“1/21‘(2)1‘(z + -;Ll—-)I‘ (z + —’2;) cee I‘(Z——t—n—;-l—>

n

There are pretty formulas for the derivatives of the gamma function such as

1 1 !
2 ,_ 1 e
(27 d*log I'(2)/d* = —+ (z + 1)? + (z + 2)* *

This is an example of a type of infinite series out of which G. Mittag-Leffler
(1846~-1927) later created his theory of partial fraction developments of mero-
morphic functions. There is the intimate relationship between the gamma func-
tion and the zeta function which has been of fundamental importance in study-
ing the distribution of the prime numbers,
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(28) (@) = ¢l — 3T — 2)2°7* 1 sin 373,
where
(29) g'(z)=1+-1—+'l+”-.

2 3

This formula has some interesting history related to it. It was first proved by
Riemann in 1859 and was conventionally attributed to him. Yet in 1894 it was
discovered that a modified version of the identity appears in some work of Euler
which had been done in 1749. Euler did not claim to have proved the formula.
However, he “verified” it for integers, for %, and for 3/2. The verification for }
is by direct substitution, but for all the other values, Euler works with divergent
infinite series. This was more than 100 years in advance of a firm theory of such
series, but with unerring intuition, he proceeded to sum them by what is now
called the method of Abel summation. The case 3/2 is even more interesting.
There, invoking both divergent series and numerical evaluation, he came out
with numerical agreement to 5 decimal places! All this work convinced him of
the truth of his identity. Rigorous modern proofs do not require the theory of
divergent series, but the notions of analytic continuation are crucial.

In view of the essential unity of the gamma function over the whole complex
plane it is theoretically and aesthetically important to have a formula which
works for all complex numbers. One such formula was supplied in 1848 by F. W.
Newman:

(30) 1/T(2) = ze»{ (1 + z)e*} { (1 + 2/2)e=/2} - - -, wherey = .57721 56649 - - -.

This formula is essentially a factorization of 1/T'(z) and is much the same as a
factorization of polynomials. It exhibits clearly where the function vanishes.
Setting each factor equal to zero we find that 1/T'(2) is zero for =0, 2= —1,
z=—2, - - - . In the hands of Weierstrass, it became the starting point of his
particular discussion of the gamma function. Weierstrass was interested in how
functions other than polynomials may be factored. A number of isolated factor-
izations were then known. Newman’s formula (30) and the older factorization
of the sine

(31) sin 7z = m2(1 — z*)(l - %2) (1 - .:_z) .

are among them. The factorization of polynomials is largely an algebraic matter
but the extension to functions such as the sine which have an infinity of roots
required the systematic building up of a theory of infinite products. In 1876
Weierstrass succeeded in producing an extensive theory of factorizations which
included as special cases these well-known infinite products, as well as certain
doubly periodic functions.

In addition to showing the roots of 1/I'(2), formula (30) does much more.
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It shows immediately that the reciprocal of the gamma function is a much less
difficult function to deal with than the gamma function itself. It is an entire
function, that is, one of those distinguished functions which possesses no singu-
larities whatever for finite arguments. Weierstrass was so struck by the advan-
tages to be gained by starting with 1/T'(g) that he introduced a special notation
for it. He called 1/T'(#+1) the factorielle of u and wrote Fc(u).

The theory of functions of a complex variable unifies a hotch-potch of curves
and a patchwork of methods. Within this theory, with its highly developed
studies of infinite series of various types, was brought to fruition Stirling’s un-
successful attempts at solving the interpolation problem for the factorials.
Stirling had done considerable work with infinite series of the form

A+Bz+Cz(z—1)+Dz(z—1)(z—2)+ - - -.

This series is particularly useful for fitting polynomials to values given at the
integers 2=0, 1, 2, - - - . The method of finding the coefficients 4, B, C, - - -
was well known. But when an infinite amount of fitting is required, much more
than simple formal work is needed, for we are then dealing with a bona fide
infinite series whose convergence must be investigated. Starting from the series
1,2, 6, 24, - - -, Stirling found interpolating polynomials via the above series.
The resultant infinite series is divergent. The factorials grow too rapidly in size.
Stirling realized this and put out the suggestion that if perhaps one started with
the logarithms of the factorials instead of the factorials themselves the size
might be cut down sufficiently for one to do something. There the matter rested
until 1900 when Charles Hermite (1822-1901) wrote down the Stirling series for
logT'(1+42):

(32) logI'(1 + 3) = 2z — 1) 3(z — 1)(z — 2)

log 2 + ————— (log 3 — 2log2) + - - -
0g 2+ —————(log 0g2) +

and showed that this identity is valid whenever z is a complex number of the
form a-4ib with ¢>0. The identity itself could have been written down by
Stirling, but the proof would have been another matter. An even simpler start-
ing point is the function ¥(2) = (d/d2) log I'(z), now known as the digamma or
psi function. This leads to the Stirling series

dl T'(2)
—lo 2
dz &

33 G-DG—2  G-DE-26-3

2:2! 3-3!

=9 + (Z - 1) - )
which in 1847 was proved convergent for >0 by M. A. Stern, a teacher of
Riemann. All these matters are today special cases of the extensive theory of the
convergence of interpolation series.

Functions are the building blocks of mathematical analysis. In the 18th and
19th centuries mathematicians devoted much time and loving care to develop-
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ing the properties and interrelationships between special functions. Powers,
roots, algebraic functions, trigonometric functions, exponential functions, loga-
rithmic functions, the gamma function, the beta function, the hypergeometric
function, the elliptic functions, the theta function, the Bessel function, the
Matheiu function, the Weber function, Struve function, the Airy function,
Lamé functions, literally hundreds of special functions were singled out for
scrutiny and their main features were drawn. This is an art which is not much
cultivated these days. Times have changed and emphasis has shifted. Mathe-
maticians on the whole prefer more abstract fare. Large classes of functions are
studied instead of individual ones. Sociology has replaced biography. The field
of special functions, as it is now known, is left largely to a small but ardent
group of enthusiasts plus those whose work in physics or engineering confronts
them directly with the necessity of dealing with such matters.

The early 1950’s saw the publication of some very extensive computations
of the gamma function in the complex plane. Led off in 1950 by a six-place table
computed in England, it was followed in Russia by the publication of a very ex-
tensive six-place table. This in turn was followed in 1954 by the publication by
the National Bureau of Standards in Washington of a twelve-place table. Other
publications of the complex gamma function and related functions have ap-
peared in this country, in England, and in Japan. In the past, the major com-
putations of the gamma function had been confined to real values. Two fine
tables, one by Gauss in 1813 and one by Legendre in 1825, seemed to answer the
mathematical needs of a century. Modern technology had also caught up with
the gamma function. The tables of the 1800’s were computed laboriously by
hand, and the recent ones by electronic digital computers.

But what touched off this spate of computational activity? Until the initial
labors of H. T. Davis of Indiana University in the early 1930’s, the complex
values of the gamma function had hardly been touched. It was one of those
curious turns of events wherein the complex gamma function appeared in the
solution of various theoretical problems of atomic and nuclear theory. For in-
stance, the radial wave functions for positive energy states in a Coulomb field
leads to a differential equation whose solution involves the complex gamma func-
tion. The complex gamma function enters into formulas for the scattering of
charged particles, for the nuclear forces between protons, in Fermi’s approximate
formula for the probability of B-radiation, and in many other places. The im-
portance of these problems to physicists has had the side effect of computational
mathematics finally catching up with two and a quarter centuries of theoretical
develppment.

As analysis grew, both creating special functions and delineating wide classes
of functions, various classifications were used in order to organize them for pur-
poses of convenient study. The earlier mathematicians organized functions from
without, operationally, asking what operations of arithmetic or calculus had to
be performed in order to achieve them. Today, there is a much greater tendency
to look at functions from within, organically, considering their construction as
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achieved and asking what geometrical characteristics they possess. In the earlier
classification we have at the lowest and most accessible level, powers, roots, and
all that could be concocted from them by ordinary algebraic manipulation.
These came to be known as algebraic functions. The calculus, with its character-
istic operation of taking limits, introduced logarithms and exponentials, the
latter encompassing, as Euler showed, the sines and cosines of trigonometry
which had been available from earlier periods of discovery. There is an impas-
sable wall between the algebraic functions and the new limit-derived ones. This -
wall consists in the fact that try as one might to construct, say, a trigonometric
function out of the finite material of algebra, one cannot succeed. In more
technical language, the algebraic functions are closed with respect to the proc-
esses of algebra, and the trigonometric functions are forever beyond its pale.
(By way of a simple analogy: the even integers are closed with respect to the
operations of addition, subtraction, and multiplication; you cannot produce an
odd integer from the set of even integers using these tools.) This led to the con-
cept of transcendental functions. These are functions which are not algebraic.
The transcendental functions count among their members, the trigonometric
functions, the logarithms, the exponentials, the elliptic functions, in short, prac-
tically all the special functions which had been singled out for special study. But
such an indescriminate dumping produced too large a class to handle. The
transcendentals had to be split further for convenience. A major tool of analysis
is the differential equation, expressing the relationship between a function and
its rate of growth. It was found that some functions, say the trigonometric func-
tions, although they are transcendental and do not therefore satisfy an algebraic
equation, nonetheless satisfy a differential equation whose coefficients are alge-
braic. The solutions of algebraic differential equations are an extensive though
not all-encompassing class of transcendental functions. They count among their
members a good many of the special functions which arise in mathematical
physics.

Where does the gamma function fit into this? It is not an algebraic function.
This was recognized early. It is a transcendental function. But for a long while
it was an open question whether the gamma function satisfied an algebraic
differential equation. The question was settled negatively in 1887 by O. Hélder
(1859-1937). It does not. It is of a higher order of transcendency. It is a so-
called transcendentally transcendent function, unreachable by solving algebraic
equations, and equally unreachable by solving algebraic differential equations.
The subject has interested many people through the years and in 1925 Alexander
Ostrowski, now Professor Emeritus of the University of Basel, Switzerland, gave
an ‘alternate proof of Hélder’s theorem.

Problems of classification are extremely difficult to handle. Consider, for
instance, the following: Can the equation x7+8x41 be solved with radicals?
Is 7 transcendental? Can [dx/+/(x*+1) be found in terms of specified elemen-
tary functions? Can the differential equation dy/dx = (1/x)+(1/y) be resolved
with quadratures? The general problems of which these are representatives are



1959] LEONHARD EULER'S INTEGRAL 865

even today far from solved and this despite famous theories such as Galois
Theory, Lie theory, theory of Abelian integrals which have derived from such
simple questions. Each individual problem may be a one-shot affair to be solved
by individual methods involving incredible ingenuity.

HADAMARD'S FACTORIAL FUNCTION
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There are infinitely many functions which produce factorials. The function
F(x) = (1/T(1 — x)) (d/dx) log {T((1 — x)/2)/T(1 — x/2)}

is an entire analytic function which coincides with the gamma function at the positive integers.
It satisfies the functional equation F(x+4-1)=xF(x)-+(1/T(1—x)).

We return once again to our interpolation problem. We have shown how,
strictly speaking, there are an unlimited number of solutions to this problem. To
drive this point home, we might mention a curious solution given in 1894 by
Jacques Hadamard (1865— ). Hadamard found a relatively simple formula
involving the gamma function which also produces factorial values at the posi-
tive integers. (See Figs. 1 and 4.) But Hadamard’s function

0 g 2(5)/0-3)

in strong contrast to the gamma function itself, possesses no singularities any-
where in the finite complex plane. It is an entire analytic solution to the inter-
polation problem and hence, from the function theoretic point of view, is a
simpler solution. In view of all this ambiguity, why then should Euler’s solution
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be considered the solution par excellence?

From the point of view of integrals, the answer is clear. Euler’s integral
appears everywhere and is inextricably bound to a host of special functions. Its
frequency and simplicity make it fundamental. When the chips are down, it is
the very form of the integral and of its modifications which lend it utility and
importance. For the interpolatory point of view, we can make no such claim.
We must take a deeper look at the gamma function and show that of all the
solutions of the interpolation problem, it, in some sense, is the simplest. This is
partially a matter of mathematical aesthetics.

A PsEUDOGAMMA FUNCTION

N~

N
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The function illustrated produces factorials, satisfies the functional equation of the gamma
function, and is convex.

We have already observed that Euler’s integral satisfies the fundamental
recurrence equation, xI'(x) =I'(x+1), and that this equation enables us to com-
pute all the real values of the gamma function from knowledge merely of its
values in the interval from 0 to 1. Since the solution to the interpolation problem
is not determined uniquely, it makes sense to add to the problem more condi-
tions and to inquire whether the augmented problem then possesses a unique
solution. If it does, we will hope that the solution coincides with Euler’s. The
recurrence relationship is a natural condition to add. If we do so, we find that
the gamma function is again not the only function which satisfies this recurrence
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relation and produces factorials. One may easily construct a “pseudo” gamma
function I's(x) by defining it between, say, 1 and 2 in any way at all (subject
only to I's(1) =1, I's(2) =1), and allowing the recurrence relationship to extend
its values everywhere else.

If, for instance, we let I's(x) be 1 everywhere between 1 and 2, the recur-
rence relation leads us to the function (see Fig. 5).

Ts(x) = 1/x 0<zx=1;

Ts(x) =1, 1=sx2=2;
(35) (%) ?

Tg(x) =2 — 1, 2=2x=3;

Is(x) = (x—1)(x—2), 3sx=4;--

We might end up with a fairly weird result, depending upon what we start
with. Even if we require the final result to be an analytic function, there are
ways of doing it. For instance, take any function which is both analytic and
periodic with period 1. Call it p(x). Make sure that p(1)=1. The function
1+sin 2mx will do for p(x). Now multiply the ordinary gamma function I'(x)
by p(x) and the result I'(x)p(x) will be a “pseudo” gamma function which is
analytic, satisfies the recurrence relation, and produces factorials! Thus, we
still do not have enough conditions. We must augment the problem again. But
what to add?

By the middle of the 19th century it was recognized that Euler’s gamma
function was the only continuous function which satisfied simultaneously the
recurrence relationship, the reflection formula and the multiplication formula.
Weierstrass later showed that the gamma function was the only continuous solu-
tion of the recurrence relationship for which {T'(x+#)}/{(#n—1)n=}—1 for all
x. These conditions added to the interpolation problem will serve to produce a
unique solution and one which coincides with Euler’s. But they appear too heavy
and too much like Monday morning quarterbacking. That is to say, the added
conditions are hardly “natural” for they are tied in with the deeper analytical
properties of the gamma function. The search went on.

Aesthetic conditions were not to be found in the older, analytic considera-
tions, but in a newer, inner, organic approach to function theory which was
developing at the turn of the century. Backed up by Cantor’s set theory and
an emerging theory of topology, the new function theory looked not so much
at equations and identities as at the fundamental geometrical properties. The
desired condition was found in notions of convexity. A curve is convex if the
following is true of it: take any two points on the curve and join them by a
straight line; then the portion of the curve between the points lies below the
line. A convex curve does not wiggle; it cannot look like a camel’s back. At the
turn of the century, convexity was in the mathematical air. It was found to be
intrinsic to many diverse phenomena. Over the period of a generation, it was
sought out, it was generalized, it was abstracted, it was investigated for its
own sake, it was applied. Called to attention by the work of . Brunn in 1887
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and of H. Minkowski in 1903 on convex bodies and given an independent inter-
est in 1906 by the work of J. L. W. V. Jensen, the idea of convexity spread and
established itself in mean value theory, in potential theory, in topology, and
most recently in game theory and linear programming. At the turn of the
century then, an application of convexity to the gamma function would have
been natural and in order.

The individual curves which make up the gamma function are all convex.
A glance at Figure 2 shows this to be true. If, as in the previous paragraph, a
pseudogamma function satisfying the recurrence formula were produced by
introducing the ripple 1+sin 27x as a factor, it would no longer be true. It
must have occurred to many mathematicians to find out whether the gamma
function is the only function which yields the factorial values, satisfies the re-
currence relation, and is convex downward for x>0. Unfortunately, this is not
true. Figure 5 shows a pseudogamma function which possesses just these prop-
erties. It remained until 1922 to discover a correct formulation. But it was not
at too far a distance. The gamma function is not only convex, it is also logarith-
mically convex. That is to say, the graph of log I'(x) is also convex down for
x>0. This fact is implicit in formula (27). Logarithmic convexity is a stronger
condition than ordinary convexity for logarithmic convexity implies, but is not
implied by, ordinary convexity. Now Harald Bohr and J. Mollerup were able
to show the surprising fact that the gamma function is the only function which
satisfies the recurrence relationship and is logarithmically convex. The original
proof was simplified several years later by Emil Artin, now professor at Prince-
ton University, and the theorem together with Artin’s method of proof now
constitute the Bohr-Mollerup-Artin theorem. Its precise wording is this:

The Euler gamma function is the only function defined for x>0 which is posi-
tive, is 1 at x=1, satisfies the functional equation xI'(x) =T'(x-+1), and is logarith-
mically convex.

This theorem is at once so striking and so satisfying that the contemporary
synod of abstractionists who write mathematical canon under the pen name
of N. Bourbaki has adopted it as the starting point for its exposition of the
gamma function. The proof: one page; the discovery: 193 years.

There is much that we know about the gamma function. Since Euler’s day
more than 400 major papers relating to it have been written. But a few things
remain that we do not know and that we would like to know. Perhaps the hard-
est of the unsolved problems deal with questions of rationality and transcen-
dentality. Consider, for instance, the number y=.57721 - - - which appears in
forrhula (30). This is the Euler-Mascheroni constant. Many different expressions
can be given for it. Thus,

(36) v = — dT(x)/d% |,

1 1 1
lim (1+—-+——l— .- -—l——) — log n.
2 3 n

n— o

I

(37 v
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Though the numerical value of v is known to hundreds of decimal places, it is
not known at the time of writing whether # is or is not a rational number. An-
other problem of this sort deals with the values of the gamma function itself.
Though, curiously enough, the product I'(1/4) /+/7 can be proved to be trans-
cendental, it is not known whether I'(1/4) is even rational.

George Gamow, the distinguished physicist, quotes Laplace as saying that
when the known areas of a subject expand, so also do its frontiers. Laplace
evidently had in mind the picture of a circle expanding in an infinite plane.
Gamow disputes this for physics and has in mind the picture of a circle expand-
ing on a spherical surface. As the circle expands, its boundary first expands, but
later contracts. This writer agrees with Gamow as far as mathematics is con-
cerned. Yet the record is this: each generation has found something of interest
to say about the gamma function. Perhaps the next generation will also.

The writer wishes to thank Professor C. Truesdell for his helpful comments and criticism and
Dr. H..E. Salzer for a number of valuable references.
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LINEAR DIFFERENTIAL OR DIFFERENCE EQUATIONS WITH
CONSTANT COEFFICIENTS

H. L. TURRITTIN, Institute of Technology, University of Minnesota

1, Introduction.* Solutions of a system of linear differential or difference
equations with real constant coefficients ay;, such as

6)) dx;/dt = Z a;x; and  x,(¢ + h) = Z aii%i(D),
=1 =1

* This paper was prepared in part while working under USAF contract No. AF 33(038)22893
and in part while working under QOR contract No. DA-11-022-ORD-2042,



	Article Contents
	p. 849
	p. 850
	p. 851
	p. 852
	p. 853
	p. 854
	p. 855
	p. 856
	p. 857
	p. 858
	p. 859
	p. 860
	p. 861
	p. 862
	p. 863
	p. 864
	p. 865
	p. 866
	p. 867
	p. 868
	p. 869

	Issue Table of Contents
	The American Mathematical Monthly, Vol. 66, No. 10 (Dec., 1959), pp. 843-964
	Volume Information [pp. 951-964]
	Front Matter
	On a Family of Generalized Conchoids [pp. 843-849]
	Leonhard Euler's Integral: A Historical Profile of the Gamma Function: In Memoriam: Milton Abramowitz [pp. 849-869]
	Linear Differential or Difference Equations with Constant Coefficients [pp. 869-875]
	On the Location of the Centroid of Certain Solids [pp. 875-879]
	A Generalization of the Trigonometric Functions [pp. 879-884]
	Generalization of a Peano Symbol [p. 885]
	Solutions by Quadrature of Riccati and Second-Order Linear Differential Equations [pp. 886-889]
	Correction: A Look at Mathematical Competitions [p. 890]
	Mathematical Notes
	Differentiation of Infinite Series of Functions [pp. 890-892]
	On the Disconjugacy of Second-Order Linear Differential Equations [pp. 892-894]
	A Note on Extreme Values of a Function of Several Variables [pp. 895-896]
	The Inequality of Steensholt for an n-Dimensional Simplex [pp. 896-897]
	Notes on Differential Geometry [pp. 898-899]

	Classroom Notes
	Concerning Domains of Real Functions [pp. 900-902]
	Some Simple Examples of Groups [pp. 902-905]
	A "Static" Approach to Derivatives [pp. 905-908]
	A Useful Integral Formula [p. 908]

	Mathematical Education Notes
	The Education of Mathematics Teachers [pp. 909-911]
	Probability and Statistics [pp. 911-913]
	Effect of Computing Machinery [pp. 913-915]

	Elementary Problems and Solutions
	Problems for Solution: E1391-E1395 [pp. 915-916]
	Solutions
	E1361 [pp. 916-917]
	E1362 [pp. 917-918]
	E1363 [p. 918]
	E1364 [pp. 918-919]
	E1365 [pp. 919-920]


	Advanced Problems and Solutions
	Problems for Solution: 4875-4880 [pp. 920-921]
	Solutions
	4828 [pp. 921-923]
	4829 [p. 923]
	4831 [pp. 923-924]
	4832 [pp. 924-925]
	4833 [pp. 925-926]
	4834 [pp. 926-927]


	Recent Publications
	Review: untitled [p. 927]
	Review: untitled [p. 928]
	Review: untitled [p. 928]
	Review: untitled [p. 929]
	Review: untitled [pp. 929-930]
	Review: untitled [pp. 930-931]
	Review: untitled [p. 931]
	Review: untitled [pp. 931-932]
	Brief Mention [pp. 932-935]

	News and Notices [pp. 935-945]
	The Mathematical Association of America: Official Reports and Communications
	Conferences for Lecturers at NSF 1959 Summer Institutes in Mathematics [p. 946]
	The May Meeting of the Indiana Section [pp. 946-947]
	The May Meeting of the Upper New York State Section [pp. 947-949]

	Corrections: The Earle Raymond Hedrick Lectures [p. 949]
	Corrections: The April Meeting of the Iowa Section [p. 949]
	The Mathematical Association of America: Official Reports and Communications
	Acknowledgment [pp. 949-950]
	Calendar of Future Meetings [p. 950]

	Back Matter





