MID TERM 3

Problem 1. (10 points) What is the radius of convergence of $\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$. **Problem 2. (20 points)** Consider the function $f(z) = \frac{z}{\sin(z)}$.

(1) Prove that z = 0 is a removable singularity of f(z).

Now, let
$$\frac{z}{\sin(z)} = \sum_{n=0}^{\infty} c_n z^n$$
 be the Taylor series expansion of $f(z)$ centered at 0.

(2) What is the radius of convergence of $\sum_{n=0}^{\infty} c_n z^n$?

- (3) Prove that $c_{2k+1} = 0$ for every $k \ge 0$.
- (4) Compute c_0, c_2 and c_4 .

Problem 3. (10 points) Compute $\operatorname{Res}_{z=0}\left(\frac{e^{3z}-3e^z+2}{z^4}\right)$.

Problem 4. (10 points) Let C be the counterclockwise circle of radius 3, centered at 0. Prove that $\int_C \frac{2z^3 + 1}{z^2(z-1)(z-2)} dz = 4\pi \mathbf{i}.$

Problem 5. (10 points) Compute the Laurent series expansion of $\frac{1}{z^2(z-2)}$ near z = 2. Problem 6. (20 points) Prove that $\int_0^{2\pi} \frac{d\theta}{(2+\cos(\theta))^2} = \frac{4\pi}{3\sqrt{3}}$. Problem 7. (20 points) Prove that $\int_0^{\infty} \frac{x\sin(x)}{x^2+1} dx = \frac{\pi}{2e}$.

Bonus. Let $a \in \mathbb{R}_{>0}$ be a fixed positive real number. Prove that $\int_0^{\pi} \tan(x+a\mathbf{i}) dx = \pi \mathbf{i}$.