COMPLEX ANALYSIS: PRACTICE EXAM 1

Problem 1. Sketch the following domain and state whether it is open/closed/neither, connected or not, bounded or not (no justification needed).

$$
S=\left\{z \in \mathbb{C} \text { such that } \operatorname{Im}(z)>1 \text { and } \frac{\pi}{4} \leq \arg (z) \leq \frac{3 \pi}{4}\right\}
$$

Problem 2. Compute the limits of the following functions, as $z \rightarrow 0$.
(a) $\frac{e^{z^{2}}-1}{z}$
(b) $\frac{\sin (3 z)}{2 z}$
(c) $\frac{z^{2}+z-\mathbf{i}}{2 z+3}$

Problem 3. For the following function, verify the Cauchy-Riemann equations, and compute its derivative. Here, $x=\operatorname{Re}(z)$ and $y=\operatorname{Im}(z)$.

$$
f(z)=e^{-y}((x+1) \cos (x)-y \sin (x))+\mathbf{i} e^{-y}((x+1) \sin (x)+y \cos (x))
$$

Problem 4. Identify the domain of each of the functions below, and compute their derivative:
(a) $\ln (3 z-2)$.
(b) $(\mathbf{i} z+1)^{\frac{1}{3}}$.

Problem 5. Compute the real and imaginary parts of the following:

$$
(1+\sqrt{3} \mathbf{i})^{3 \pi \mathbf{i}}
$$

Problem 6. Write the definition of $\cos (z), \sin (z)$ for $z \in \mathbb{C}$. Use this to verify the following identity:

$$
\sin (2 z) \sin (z)=\cos (z)(1-\cos (2 z))
$$

Problem 7. Compute all $z \in \mathbb{C}$ such that $z^{6}+1=0$. Let us call them $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{6}$. Verify that $\alpha_{1} \cdot \alpha_{2} \cdot \ldots \cdot \alpha_{6}=1$.

