COMPLEX ANALYSIS: PRACTICE EXAM 2

Problem 1. Let C be the contour, consisting of the following four pieces:

- From -2 to -1 along a straight line.
- From -1 to +1 along the semicircular arc (radius 1 , centered at 0) lying above the real axis.
- From 1 to 2 along a straight line.
- From 2 to -2 along the semicircular arc (radius 2, centered at 0) lying above the real axis.
(a) Write each of the four smooth parts of C in parametric form.
(b) Compute $\int_{C} \frac{z}{\bar{z}} d z$.

Problem 2. Let $f(z)$ be a holomorphic function, defined on $\Omega=\{z \in \mathbb{C}:|z|>2\}$. Assume that $|f(z)|<\frac{1}{|z|^{2}}$, for every $z \in \Omega$. Let C be the counterclockwise circle of radius 3 , centered at 0 . Prove that $\int_{C} f(z) d z=0$.
Problem 3. Let γ be any piecewise smooth path starting at 0 and ending at $1+\mathbf{i}$. Compute $\int_{\gamma} f(z) d z$ for each of the following functions.
(a) $f(z)=\sin ^{3}(z), \quad(b) f(z)=\left(e^{z}-1\right)^{2}$.

Problem 4. Let C be the counterclockwise circle of radius 2 , centered at 0 . Compute

$$
\int_{C} \frac{z^{2}-2}{(z+5)(2 z-3)(z-1)} d z .
$$

Problem 5. Compute the partial fraction decomposition of $\frac{2 z-1}{(z-3)(z-\mathbf{i})^{2}}$.
Problem 6. Let $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$ be given by:

$$
\gamma(t)= \begin{cases}e^{\mathrm{i} t}, & 0 \leq t \leq \pi \\ 2+3 e^{\mathrm{i} t}, & \pi \leq t \leq 2 \pi\end{cases}
$$

Prove that $\int_{\gamma} \frac{1}{z} d z=\ln (5)+2 \pi \mathbf{i}$.

