PROBLEMS ABOUT DOUBLY-PERIODIC FUNCTIONS.

SUMMARY OF RESULTS ABOUT DOUBLY-PERIODIC FUNCTIONS

Fix $\tau \in \mathbb{C}$ such that $\operatorname{Im}(\tau) > 0$.

We say f(z) is a doubly-periodic function (with periods 1 and τ) if $f : \mathbb{C} \dashrightarrow \mathbb{C}$ is a meromorphic function and f(z+1) = f(z) and $f(z+\tau) = f(z)$.

- (1) Doubly-periodic + Holomorphic \Rightarrow Constant.
- (2) Sum of residues of f(z) at poles lying within a fundamental parallelogram is zero.
- (3) Number of zeroes of f(z) = Number of poles of f(z) within a fundamental parallelogram. The zeroes (and poles) are to be counted according to their order of vanishing (and the order of poles).
- (4) Sum of zeroes Sum of poles = $m + n\tau$, for some $m, n \in \mathbb{Z}$.

Problem 1. Let us take $\tau = \mathbf{i}$ and choose a fundamental parallelogram R to be the square with vertices $0, 1, \mathbf{i}, 1 + \mathbf{i}$.

- (Q1) Can there be a doubly–periodic function with only one zero within R, of order of vanishing 1, say at $\frac{1}{2} + \frac{1}{2}\mathbf{i}$?
- (Q2) Can there be a doubly-periodic function with only one pole within R, of order 1?
- (Q3) Can there be a doubly-periodic function g(z) satisfying the following condition? Within R: (i) g(z) has one pole of order 2 at $\beta = \frac{1}{2} + \frac{1}{2}\mathbf{i}$, (ii) g(z) has two zeroes, each with order of vanishing 1, at $\alpha_1 = \frac{1}{8} + \frac{1}{4}\mathbf{i}$ and $\alpha_2 = \frac{7}{8} + \frac{3}{4}\mathbf{i}$. If yes, prove that there is only one such function, upto multiplication by a constant. Use theta function (see next section) to write a formula for q(z).

Problem 2. Why can't we have triply-periodic functions? Let $\tau \in \mathbb{C}$, with $\operatorname{Im}(\tau) > 0$ be fixed as before. Assume that $h \in \mathbb{C}$ is such that $\mathbb{Z}h \cap (\mathbb{Z} + \tau\mathbb{Z}) = \{0\}$ (that is, for any non-zero integer $p \in \mathbb{Z}_{\neq 0}$, ph cannot be written as $m + n\tau$, with $m, n \in \mathbb{Z}$). Assume that f(z) is a meromorphic function, such that

$$f(z+1) = f(z),$$
 $f(z+\tau) = f(z)$ and $f(z+h) = f(z).$

Prove that f(z) cannot have any singularities. Deduce from it that f(z) must be a constant.

Problem 3. Assume that f(z) is a holomorphic function, satisfying f(z+1) = f(z) and $f(z+\tau) = e^{-2\pi i z} f(z)$. Let R be a fundamental parallelogram such that f(z) does not have any zeroes on the boundary of R. Prove that f(z) has exactly one zero within R, of order of vanishing 1.

THETA FUNCTION

 $\theta : \mathbb{C} \to \mathbb{C}$ is a holomorphic function defined on the entire complex plane, satisfying the following three properties:

- (1) $\theta(z+1) = -\theta(z)$ and $\theta(z+\tau) = -e^{-\pi i \tau} e^{-2\pi i z} \theta(z)$.
- (2) $\theta(z) = 0$ if, and only if $z = m + n\tau$ where $m, n \in \mathbb{Z}$. The order of vanishing of $\theta(z)$ at $z = m + n\tau$ is 1.
- (3) $\theta'(0) = 1.$

In addition, $\theta(-z) = -\theta(z)$ (i.e, theta function is odd).

Explicitly, we have:

$$\theta(z) = \frac{\sin(\pi z)}{\pi} \cdot \prod_{n=1}^{\infty} \frac{\left(1 - e^{2\pi i n \tau} e^{2\pi i z}\right) \left(1 - e^{2\pi i n \tau} e^{-2\pi i z}\right)}{(1 - e^{2\pi i n \tau})^2}$$
$$\theta(z) = C \sum_{\ell \in \mathbb{Z}} (-1)^\ell e^{\pi i \tau \ell (\ell+1)} e^{\pi i (2\ell+1)z}$$
$$= C \sum_{k=0}^{\infty} (-1)^k e^{\pi i \tau k (k+1)} \left(e^{(2k+1)\pi i z} - e^{-(2k+1)\pi i z}\right)$$

Here, C is a constant (depending on τ , but not on z). We didn't prove it, but its value is given by:

$$\frac{1}{C} = 2\pi \mathbf{i} \sum_{k=0}^{\infty} (-1)^k (2k+1) e^{\pi \mathbf{i} \tau k(k+1)} = 2\pi \mathbf{i} \prod_{n=1}^{\infty} \left(1 - e^{2\pi \mathbf{i} n \tau} \right)^3.$$

Problem 4. Prove that $\lim_{\mathrm{Im}(\tau)\to\infty} \theta(z) = \frac{e^{\pi \mathbf{i}z} - e^{-\pi \mathbf{i}z}}{2\pi \mathbf{i}}$. **Problem 5.** Consider the function $\theta_1(z;\tau) = \sum_{\ell\in\mathbb{Z}} (-1)^\ell e^{\pi \mathbf{i}\ell(\ell+1)} e^{(2\ell+1)\pi \mathbf{i}z}$. Verify that $\theta_1(z;\tau)$ satisfies the following differential equation:

$$\frac{1}{(\pi \mathbf{i})^2} \frac{\partial^2 \theta_1}{\partial z^2} - \frac{4}{\pi \mathbf{i}} \frac{\partial \theta_1}{\partial \tau} = \theta_1(z;\tau)$$

Problem 6. Let $a \in \mathbb{C}$ be such that $a \notin \mathbb{Z} + \tau \mathbb{Z}$ (that is, a cannot be written as $m + n\tau$ with $m, n \in \mathbb{Z}$). Consider the following system of equations:

f(z+1) = f(z) and $f(z+\tau) = e^{2\pi i a} f(z)$.

- (a) Use theta function to find a function f(z) satisfying these equations.
- (b) Verify that if f_1 and f_2 are two solutions of these equations, then their ratio must be doubly-periodic.
- (c) Use (a) and (b) to prove that if these equations do not admit a holomorphic solution.

Problem 7. Let $x, y \in \mathbb{C}$ be fixed. Prove that $\frac{A\theta(z-x)\theta(z+x) + B\theta(z-y)\theta(z+y)}{\theta(z)^2}$ is doubly-periodic, for any constants $A, B \in \mathbb{C}$. Determine the values of A, B which will make this function holomorphic, and hence a constant C. Find the value of C.

Solutions

Problem 1. The answer to (Q2) is negative. Let f(z) be a doubly-periodic function with only pole, say at z = a, of order 1 within a fundamental parallelogram R. Since the sum of its residues at poles within R has to be zero, $\operatorname{Res}_{z=a}(f(z)) = 0$. But that means a is not a pole of f(z).

The answer to (Q1) is also negative. If f(z) were to have only one zero, of order of vanishing 1 within R, then it will also have only one pole of order 1 within R. We already saw that it is impossible.

The answer to (Q3) is positive, since all the conditions check out: number of poles = number of zeroes = 2. Sum of poles - Sum of zeroes = 0 which is of the form $m + n\tau$ (with m = n = 0.) One such function can be written as: $g(z) = \frac{\theta(z - \alpha_1)\theta(z - \alpha_2)}{\theta(z - \beta)^2}$. Uniqueness, up to a constant, follows from Theorem 34.5.

Problem 2. Let f(z) be a "triply-periodic" function, as in the problem. Let R be the parallelogram with vertices $0, 1, \tau, 1 + \tau$.

If f(z) has a pole, say α , within R, then by the third periodicity, $\alpha + ph$ is also a pole of f(z), for every $p \in \mathbb{Z}$. By our assumption that ph cannot be written as $m + n\tau$, we get infinitely many poles of f(z) which lie within R (for each $p \in \mathbb{Z}_{\neq 0}$, shift $\alpha + ph$ by 1 and τ to find α_p within R such that $\alpha + ph \equiv \alpha_p \mod \Lambda_{\tau} = \mathbb{Z} + \tau \mathbb{Z}$.) Since R is closed and bounded, these infinitely many poles will cluster around a point of R, creating an essential singularity, which contradicts the hypothesis that f(z) is meromorphic.

Hence f(z) cannot have any poles, so it is holomorphic and doubly-periodic, therefore a constant.

Problem 3. You should read the argument on page 6 of Lecture 35 for this problem.

Problem 4. Using the formula of $\theta(z)$ given above, and the fact that $\lim_{\text{Im}(\tau)\to\infty} e^{2\pi i n\tau} = 0$ for every $n \in \mathbb{Z}_{\geq 1}$, we get:

$$\lim_{\mathrm{Im}(\tau)\to\infty}\theta(z) = \frac{\sin(\pi z)}{\pi} = \frac{e^{\pi \mathbf{i}z} - e^{-\pi \mathbf{i}z}}{2\pi \mathbf{i}}.$$

Problem 5. The following equations are easy to verify:

$$\frac{1}{(\pi \mathbf{i})^2} \partial_z^2 \theta_1 = \sum_{\ell \in \mathbb{Z}} (-1)^\ell e^{\pi \mathbf{i} \ell (\ell+1)} (2\ell+1)^2 e^{\pi \mathbf{i} (2\ell+1)z}$$
$$\frac{1}{\pi \mathbf{i}} \partial_\tau \theta_1 = \sum_{\ell \in \mathbb{Z}} (-1)^\ell e^{\pi \mathbf{i} \ell (\ell+1)} \ell (\ell+1) e^{\pi \mathbf{i} (2\ell+1)z}$$

The claimed differential equation now follows from: $(2\ell + 1)^2 - 4\ell(\ell + 1) = 1$.

Problem 6. (a) A solution is given by $f(z) = \frac{\theta(z-a)}{\theta(z)}$: $f(z+1) = \frac{\theta(z+1-a)}{\theta(z+1)} = \frac{-\theta(z-a)}{-\theta(z)} = f(z)$ $f(z+\tau) = \frac{\theta(z+\tau-a)}{\theta(z+\tau)} = \frac{-e^{-\pi i\tau}e^{-2\pi i(z-a)}\theta(z-a)}{-e^{-\pi i\tau}e^{-2\pi i z}\theta(z)} = e^{2\pi i a}f(z)$

(b) is trivial to check.

(c) If g(z) is a holomorphic solution to these equations, and f(z) is the solution given above, then $\frac{g(z)}{f(z)}$ is doubly-periodic, with only one pole within a fundamental parallelogram, at z = a, of order 1. In Problem 1 (Q2) we saw that there is no such function. Hence we cannot have a holomorphic solution.

Problem 7. Let
$$F(z) = \frac{A\theta(z-x)\theta(z+x) + B\theta(z-y)\theta(z+y)}{\theta(z)^2}$$
.

For any $c \in \mathbb{C}$, let $f(z) = \theta(z - c)\theta(z + c)$. Then, by the periodicity properties of $\theta(z)$, we have:

$$f(z+1) = f(z)$$
 and $f(z+\tau) = e^{-2\pi i \tau} e^{-4\pi i z} f(z).$

This implies that F(z) is doubly-periodic.

Let us determine a choice of A, B which makes the numerator vanish at z = 0.

$$0 = A\theta(-x)\theta(x) + B\theta(-y)\theta(y) = -A\theta(x)^2 - B\theta(y)^2.$$

For instance, we can take $A = \theta(y)^2$ and $B = -\theta(x)^2$.

Now we know that
$$F(z) = \frac{\theta(y)^2 \theta(z-x) \theta(z+x) - \theta(x)^2 \theta(z-y) \theta(z+y)}{\theta(z)^2}$$
 is (i) doubly-

periodic (ii) has no poles: if F(z) were to have a pole, it must be at z = 0 (within a fundamental parallelogram containing 0), where the order is either 0 or 1 ($\theta(z)^2$ vanishes to order 2 at z = 0, and the numerator vanishes to order at least 1 at z = 0). The order of the pole at z = 0 cannot possibly be 1 (see Problem 1 (Q2)), so it must be 0 - i.e, F(z) has no poles.

Being holomorphic and doubly-periodic F(z) = C is a constant.

$$C = F(x) = \frac{-\theta(x)^2\theta(x-y)\theta(x+y)}{\theta(x)^2} = -\theta(x-y)\theta(x+y).$$

Thus, Problem 7 gives us a proof of the following identity:

$$\theta(y)^2\theta(z-x)\theta(z+x) - \theta(x)^2\theta(z-y)\theta(z+y) = -\theta(z)^2\theta(x-y)\theta(x+y)$$

Note that this identity can be obtained from Fay's trisecant identity (Lecture 35, §35.2) by setting $\alpha = z$, $\gamma = 0$, $\beta = x$ and $\delta = y$.