
PROBLEMS ABOUT DOUBLY–PERIODIC FUNCTIONS.

Summary of results about doubly–periodic functions

Fix τ ∈ C such that Im(τ) > 0.

We say f(z) is a doubly–periodic function (with periods 1 and τ) if f : C 99K C is a
meromorphic function and f(z + 1) = f(z) and f(z + τ) = f(z).

(1) Doubly–periodic + Holomorphic ⇒ Constant.

(2) Sum of residues of f(z) at poles lying within a fundamental parallelogram is
zero.

(3) Number of zeroes of f(z) = Number of poles of f(z) within a fundamental par-
allelogram. The zeroes (and poles) are to be counted according to their order
of vanishing (and the order of poles).

(4) Sum of zeroes - Sum of poles = m+ nτ , for some m,n ∈ Z.

Problem 1. Let us take τ = i and choose a fundamental parallelogram R to be the
square with vertices 0, 1, i, 1 + i.

(Q1) Can there be a doubly–periodic function with only one zero within R, of order

of vanishing 1, say at
1

2
+

1

2
i?

(Q2) Can there be a doubly–periodic function with only one pole within R, of order 1?

(Q3) Can there be a doubly–periodic function g(z) satisfying the following condition?

Within R: (i) g(z) has one pole of order 2 at β =
1

2
+

1

2
i, (ii) g(z) has two

zeroes, each with order of vanishing 1, at α1 =
1

8
+

1

4
i and α2 =

7

8
+

3

4
i.

If yes, prove that there is only one such function, upto multiplication by a con-
stant. Use theta function (see next section) to write a formula for g(z).

Problem 2. Why can’t we have triply–periodic functions? Let τ ∈ C, with Im(τ) > 0
be fixed as before. Assume that h ∈ C is such that Zh ∩ (Z + τZ) = {0} (that is,
for any non–zero integer p ∈ Z 6=0, ph cannot be written as m + nτ , with m,n ∈ Z).
Assume that f(z) is a meromorphic function, such that

f(z + 1) = f(z), f(z + τ) = f(z) and f(z + h) = f(z).
1



2

Prove that f(z) cannot have any singularities. Deduce from it that f(z) must be a
constant.

Problem 3. Assume that f(z) is a holomorphic function, satisfying f(z + 1) = f(z)
and f(z + τ) = e−2πizf(z). Let R be a fundamental parallelogram such that f(z) does
not have any zeroes on the boundary of R. Prove that f(z) has exactly one zero within
R, of order of vanishing 1.

Theta function

θ : C→ C is a holomorphic function defined on the entire complex plane, satisfying
the following three properties:

(1) θ(z + 1) = −θ(z) and θ(z + τ) = −e−πiτe−2πizθ(z).

(2) θ(z) = 0 if, and only if z = m+ nτ where m,n ∈ Z. The order of vanishing of
θ(z) at z = m+ nτ is 1.

(3) θ′(0) = 1.

In addition, θ(−z) = −θ(z) (i.e, theta function is odd).

Explicitly, we have:

θ(z) =
sin(πz)

π
·
∞∏
n=1

(
1− e2πinτe2πiz

) (
1− e2πinτe−2πiz

)
(1− e2πinτ )2

θ(z) = C
∑
`∈Z

(−1)`eπiτ`(`+1)eπi(2`+1)z

= C
∞∑
k=0

(−1)keπiτk(k+1)
(
e(2k+1)πiz − e−(2k+1)πiz

)
Here, C is a constant (depending on τ , but not on z). We didn’t prove it, but its value
is given by:

1

C
= 2πi

∞∑
k=0

(−1)k(2k + 1)eπiτk(k+1) = 2πi
∞∏
n=1

(
1− e2πinτ

)3
.

Problem 4. Prove that lim
Im(τ)→∞

θ(z) =
eπiz − e−πiz

2πi
.

Problem 5. Consider the function θ1(z; τ) =
∑
`∈Z

(−1)`eπi`(`+1)e(2`+1)πiz. Verify that

θ1(z; τ) satisfies the following differential equation:

1

(πi)2
∂2θ1
∂z2
− 4

πi

∂θ1
∂τ

= θ1(z; τ)
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Problem 6. Let a ∈ C be such that a 6∈ Z + τZ (that is, a cannot be written as
m+ nτ with m,n ∈ Z). Consider the following system of equations:

f(z + 1) = f(z) and f(z + τ) = e2πiaf(z).

(a) Use theta function to find a function f(z) satisfying these equations.

(b) Verify that if f1 and f2 are two solutions of these equations, then their ratio
must be doubly–periodic.

(c) Use (a) and (b) to prove that if these equations do not admit a holomorphic
solution.

Problem 7. Let x, y ∈ C be fixed. Prove that
Aθ(z − x)θ(z + x) +Bθ(z − y)θ(z + y)

θ(z)2

is doubly–periodic, for any constants A,B ∈ C. Determine the values of A,B which
will make this function holomorphic, and hence a constant C. Find the value of C.

Solutions

Problem 1. The answer to (Q2) is negative. Let f(z) be a doubly–periodic function
with only pole, say at z = a, of order 1 within a fundamental parallelogram R. Since
the sum of its residues at poles within R has to be zero, Res

z=a
(f(z)) = 0. But that

means a is not a pole of f(z).

The answer to (Q1) is also negative. If f(z) were to have only one zero, of order
of vanishing 1 within R, then it will also have only one pole of order 1 within R. We
already saw that it is impossible.

The answer to (Q3) is positive, since all the conditions check out: number of poles
= number of zeroes = 2. Sum of poles - Sum of zeroes = 0 which is of the form m+nτ

(with m = n = 0.) One such function can be written as: g(z) =
θ(z − α1)θ(z − α2)

θ(z − β)2
.

Uniqueness, up to a constant, follows from Theorem 34.5.

Problem 2. Let f(z) be a “triply–periodic” function, as in the problem. Let R be
the parallelogram with vertices 0, 1, τ, 1 + τ .

If f(z) has a pole, say α, within R, then by the third periodicity, α + ph is also
a pole of f(z), for every p ∈ Z. By our assumption that ph cannot be written as
m + nτ , we get infinitely many poles of f(z) which lie within R (for each p ∈ Z6=0,
shift α+ph by 1 and τ to find αp within R such that α+ph ≡ αp modulo Λτ = Z+τZ.)
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Since R is closed and bounded, these infinitely many poles will cluster around a point
of R, creating an essential singularity, which contradicts the hypothesis that f(z) is
meromorphic.

Hence f(z) cannot have any poles, so it is holomorphic and doubly–periodic, there-
fore a constant.

Problem 3. You should read the argument on page 6 of Lecture 35 for this problem.

Problem 4. Using the formula of θ(z) given above, and the fact that lim
Im(τ)→∞

e2πinτ = 0

for every n ∈ Z≥1, we get:

lim
Im(τ)→∞

θ(z) =
sin(πz)

π
=
eπiz − e−πiz

2πi
.

Problem 5. The following equations are easy to verify:

1

(πi)2
∂2zθ1 =

∑
`∈Z

(−1)`eπi`(`+1)(2`+ 1)2eπi(2`+1)z

1

πi
∂τθ1 =

∑
`∈Z

(−1)`eπi`(`+1)`(`+ 1)eπi(2`+1)z

The claimed differential equation now follows from: (2`+ 1)2 − 4`(`+ 1) = 1.

Problem 6. (a) A solution is given by f(z) =
θ(z − a)

θ(z)
:

f(z + 1) =
θ(z + 1− a)

θ(z + 1)
=
−θ(z − a)

−θ(z)
= f(z)

f(z + τ) =
θ(z + τ − a)

θ(z + τ)
=
−e−πiτe−2πi(z−a)θ(z − a)

−e−πiτe−2πizθ(z)
= e2πiaf(z)

(b) is trivial to check.

(c) If g(z) is a holomorphic solution to these equations, and f(z) is the solution given

above, then
g(z)

f(z)
is doubly–periodic, with only one pole within a fundamental parallel-

ogram, at z = a, of order 1. In Problem 1 (Q2) we saw that there is no such function.
Hence we cannot have a holomorphic solution.

Problem 7. Let F (z) =
Aθ(z − x)θ(z + x) +Bθ(z − y)θ(z + y)

θ(z)2
.

For any c ∈ C, let f(z) = θ(z − c)θ(z + c). Then, by the periodicity properties of
θ(z), we have:

f(z + 1) = f(z) and f(z + τ) = e−2πiτe−4πizf(z).
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This implies that F (z) is doubly–periodic.

Let us determine a choice of A,B which makes the numerator vanish at z = 0.

0 = Aθ(−x)θ(x) +Bθ(−y)θ(y) = −Aθ(x)2 −Bθ(y)2.

For instance, we can take A = θ(y)2 and B = −θ(x)2.

Now we know that F (z) =
θ(y)2θ(z − x)θ(z + x)− θ(x)2θ(z − y)θ(z + y)

θ(z)2
is (i) doubly–

periodic (ii) has no poles: if F (z) were to have a pole, it must be at z = 0 (within a
fundamental parallelogram containing 0), where the order is either 0 or 1 (θ(z)2 van-
ishes to order 2 at z = 0, and the numerator vanishes to order at least 1 at z = 0).
The order of the pole at z = 0 cannot possibly be 1 (see Problem 1 (Q2)), so it must
be 0 - i.e, F (z) has no poles.

Being holomorphic and doubly–periodic F (z) = C is a constant.

C = F (x) =
−θ(x)2θ(x− y)θ(x+ y)

θ(x)2
= −θ(x− y)θ(x+ y).

Thus, Problem 7 gives us a proof of the following identity:

θ(y)2θ(z − x)θ(z + x)− θ(x)2θ(z − y)θ(z + y) = −θ(z)2θ(x− y)θ(x+ y)

Note that this identity can be obtained from Fay’s trisecant identity (Lecture 35, §35.2)
by setting α = z, γ = 0, β = x and δ = y.


