PROBLEMS ABOUT DOUBLY-PERIODIC FUNCTIONS.

Summary of Results about doubly-PERIODIC Functions

Fix $\tau \in \mathbb{C}$ such that $\operatorname{Im}(\tau)>0$.
We say $f(z)$ is a doubly-periodic function (with periods 1 and τ) if $f: \mathbb{C} \rightarrow \mathbb{C}$ is a meromorphic function and $f(z+1)=f(z)$ and $f(z+\tau)=f(z)$.
(1) Doubly-periodic + Holomorphic \Rightarrow Constant.
(2) Sum of residues of $f(z)$ at poles lying within a fundamental parallelogram is zero.
(3) Number of zeroes of $f(z)=$ Number of poles of $f(z)$ within a fundamental parallelogram. The zeroes (and poles) are to be counted according to their order of vanishing (and the order of poles).
(4) Sum of zeroes - Sum of poles $=m+n \tau$, for some $m, n \in \mathbb{Z}$.

Problem 1. Let us take $\tau=\mathbf{i}$ and choose a fundamental parallelogram R to be the square with vertices $0,1, \mathbf{i}, 1+\mathbf{i}$.
(Q1) Can there be a doubly-periodic function with only one zero within R, of order of vanishing 1 , say at $\frac{1}{2}+\frac{1}{2} \mathbf{i}$?
(Q2) Can there be a doubly-periodic function with only one pole within R, of order 1 ?
(Q3) Can there be a doubly-periodic function $g(z)$ satisfying the following condition? Within R : (i) $g(z)$ has one pole of order 2 at $\beta=\frac{1}{2}+\frac{1}{2} \mathbf{i}$, (ii) $g(z)$ has two zeroes, each with order of vanishing 1 , at $\alpha_{1}=\frac{1}{8}+\frac{1}{4} \mathbf{i}$ and $\alpha_{2}=\frac{7}{8}+\frac{3}{4} \mathbf{i}$.
If yes, prove that there is only one such function, upto multiplication by a constant. Use theta function (see next section) to write a formula for $g(z)$.

Problem 2. Why can't we have triply-periodic functions? Let $\tau \in \mathbb{C}$, with $\operatorname{Im}(\tau)>0$ be fixed as before. Assume that $h \in \mathbb{C}$ is such that $\mathbb{Z} h \cap(\mathbb{Z}+\tau \mathbb{Z})=\{0\}$ (that is, for any non-zero integer $p \in \mathbb{Z}_{\neq 0}$, $p h$ cannot be written as $m+n \tau$, with $m, n \in \mathbb{Z}$). Assume that $f(z)$ is a meromorphic function, such that

$$
f(z+1)=f(z), \quad f(z+\tau)=f(z) \quad \text { and } \quad f(z+h)=f(z)
$$

Prove that $f(z)$ cannot have any singularities. Deduce from it that $f(z)$ must be a constant.

Problem 3. Assume that $f(z)$ is a holomorphic function, satisfying $f(z+1)=f(z)$ and $f(z+\tau)=e^{-2 \pi \mathbf{i} z} f(z)$. Let R be a fundamental parallelogram such that $f(z)$ does not have any zeroes on the boundary of R. Prove that $f(z)$ has exactly one zero within R, of order of vanishing 1 .

Theta function

$\theta: \mathbb{C} \rightarrow \mathbb{C}$ is a holomorphic function defined on the entire complex plane, satisfying the following three properties:
(1) $\theta(z+1)=-\theta(z)$ and $\theta(z+\tau)=-e^{-\pi \mathbf{i} \tau} e^{-2 \pi \mathbf{i} z} \theta(z)$.
(2) $\theta(z)=0$ if, and only if $z=m+n \tau$ where $m, n \in \mathbb{Z}$. The order of vanishing of $\theta(z)$ at $z=m+n \tau$ is 1 .
(3) $\theta^{\prime}(0)=1$.

In addition, $\theta(-z)=-\theta(z)$ (i.e, theta function is odd).
Explicitly, we have:

$$
\begin{aligned}
& \theta(z)=\frac{\sin (\pi z)}{\pi} \cdot \prod_{n=1}^{\infty} \frac{\left(1-e^{2 \pi \mathbf{i} n \tau} e^{2 \pi \mathbf{i} z}\right)\left(1-e^{2 \pi \mathbf{i} n \tau} e^{-2 \pi \mathbf{i} z}\right)}{\left(1-e^{2 \pi \mathbf{i} n \tau}\right)^{2}} \\
& \theta(z)=C \sum_{\ell \in \mathbb{Z}}(-1)^{\ell} e^{\pi \mathbf{i} \tau \ell(\ell+1)} e^{\pi \mathbf{i}(2 \ell+1) z} \\
&=C \sum_{k=0}^{\infty}(-1)^{k} e^{\pi \mathbf{i} \tau k(k+1)}\left(e^{(2 k+1) \pi \mathbf{i} z}-e^{-(2 k+1) \pi \mathbf{i} z}\right)
\end{aligned}
$$

Here, C is a constant (depending on τ, but not on z). We didn't prove it, but its value is given by:

$$
\frac{1}{C}=2 \pi \mathbf{i} \sum_{k=0}^{\infty}(-1)^{k}(2 k+1) e^{\pi \mathbf{i} \tau k(k+1)}=2 \pi \mathbf{i} \prod_{n=1}^{\infty}\left(1-e^{2 \pi \mathbf{i} n \tau}\right)^{3}
$$

Problem 4. Prove that $\lim _{\operatorname{Im}(\tau) \rightarrow \infty} \theta(z)=\frac{e^{\pi \mathbf{i} z}-e^{-\pi \mathbf{i} z}}{2 \pi \mathbf{i}}$.
Problem 5. Consider the function $\theta_{1}(z ; \tau)=\sum_{\ell \in \mathbb{Z}}(-1)^{\ell} e^{\pi \mathbf{i}(\ell+1)} e^{(2 \ell+1) \pi \mathbf{i} z}$. Verify that $\theta_{1}(z ; \tau)$ satisfies the following differential equation:

$$
\frac{1}{(\pi \mathbf{i})^{2}} \frac{\partial^{2} \theta_{1}}{\partial z^{2}}-\frac{4}{\pi \mathbf{i}} \frac{\partial \theta_{1}}{\partial \tau}=\theta_{1}(z ; \tau)
$$

Problem 6. Let $a \in \mathbb{C}$ be such that $a \notin \mathbb{Z}+\tau \mathbb{Z}$ (that is, a cannot be written as $m+n \tau$ with $m, n \in \mathbb{Z}$). Consider the following system of equations:

$$
f(z+1)=f(z) \quad \text { and } \quad f(z+\tau)=e^{2 \pi \mathrm{i} a} f(z)
$$

(a) Use theta function to find a function $f(z)$ satisfying these equations.
(b) Verify that if f_{1} and f_{2} are two solutions of these equations, then their ratio must be doubly-periodic.
(c) Use (a) and (b) to prove that if these equations do not admit a holomorphic solution.

Problem 7. Let $x, y \in \mathbb{C}$ be fixed. Prove that $\frac{A \theta(z-x) \theta(z+x)+B \theta(z-y) \theta(z+y)}{\theta(z)^{2}}$ is doubly-periodic, for any constants $A, B \in \mathbb{C}$. Determine the values of A, B which will make this function holomorphic, and hence a constant C. Find the value of C.

Solutions

Problem 1. The answer to (Q2) is negative. Let $f(z)$ be a doubly-periodic function with only pole, say at $z=a$, of order 1 within a fundamental parallelogram R. Since the sum of its residues at poles within R has to be zero, $\underset{z=a}{\operatorname{Res}}(f(z))=0$. But that means a is not a pole of $f(z)$.

The answer to (Q1) is also negative. If $f(z)$ were to have only one zero, of order of vanishing 1 within R, then it will also have only one pole of order 1 within R. We already saw that it is impossible.

The answer to (Q3) is positive, since all the conditions check out: number of poles $=$ number of zeroes $=2$. Sum of poles - Sum of zeroes $=0$ which is of the form $m+n \tau$ (with $m=n=0$.) One such function can be written as: $g(z)=\frac{\theta\left(z-\alpha_{1}\right) \theta\left(z-\alpha_{2}\right)}{\theta(z-\beta)^{2}}$. Uniqueness, up to a constant, follows from Theorem 34.5.

Problem 2. Let $f(z)$ be a "triply-periodic" function, as in the problem. Let R be the parallelogram with vertices $0,1, \tau, 1+\tau$.

If $f(z)$ has a pole, say α, within R, then by the third periodicity, $\alpha+p h$ is also a pole of $f(z)$, for every $p \in \mathbb{Z}$. By our assumption that $p h$ cannot be written as $m+n \tau$, we get infinitely many poles of $f(z)$ which lie within R (for each $p \in \mathbb{Z}_{\neq 0}$, shift $\alpha+p h$ by 1 and τ to find α_{p} within R such that $\alpha+p h \equiv \alpha_{p}$ modulo $\Lambda_{\tau}=\mathbb{Z}+\tau \mathbb{Z}$.)

Since R is closed and bounded, these infinitely many poles will cluster around a point of R, creating an essential singularity, which contradicts the hypothesis that $f(z)$ is meromorphic.

Hence $f(z)$ cannot have any poles, so it is holomorphic and doubly-periodic, therefore a constant.

Problem 3. You should read the argument on page 6 of Lecture 35 for this problem.
Problem 4. Using the formula of $\theta(z)$ given above, and the fact that $\lim _{\operatorname{Im}(\tau) \rightarrow \infty} e^{2 \pi \mathrm{i} n \tau}=0$ for every $n \in \mathbb{Z}_{\geq 1}$, we get:

$$
\lim _{\operatorname{Im}(\tau) \rightarrow \infty} \theta(z)=\frac{\sin (\pi z)}{\pi}=\frac{e^{\pi \mathbf{i} z}-e^{-\pi \mathbf{i} z}}{2 \pi \mathbf{i}}
$$

Problem 5. The following equations are easy to verify:

$$
\begin{aligned}
\frac{1}{(\pi \mathbf{i})^{2}} \partial_{z}^{2} \theta_{1} & =\sum_{\ell \in \mathbb{Z}}(-1)^{\ell} e^{\pi \mathbf{i} \ell(\ell+1)}(2 \ell+1)^{2} e^{\pi \mathbf{i}(2 \ell+1) z} \\
\frac{1}{\pi \mathbf{i}} \partial_{\tau} \theta_{1} & =\sum_{\ell \in \mathbb{Z}}(-1)^{\ell} e^{\pi \mathbf{i} \ell(\ell+1)} \ell(\ell+1) e^{\pi \mathbf{i}(2 \ell+1) z}
\end{aligned}
$$

The claimed differential equation now follows from: $(2 \ell+1)^{2}-4 \ell(\ell+1)=1$.
Problem 6. (a) A solution is given by $f(z)=\frac{\theta(z-a)}{\theta(z)}$:

$$
\begin{gathered}
f(z+1)=\frac{\theta(z+1-a)}{\theta(z+1)}=\frac{-\theta(z-a)}{-\theta(z)}=f(z) \\
f(z+\tau)=\frac{\theta(z+\tau-a)}{\theta(z+\tau)}=\frac{-e^{-\pi \mathbf{i} \tau} e^{-2 \pi \mathbf{i}(z-a)} \theta(z-a)}{-e^{-\pi \mathbf{i} \tau} e^{-2 \pi \mathbf{i} z} \theta(z)}=e^{2 \pi \mathbf{i} a} f(z)
\end{gathered}
$$

(b) is trivial to check.
(c) If $g(z)$ is a holomorphic solution to these equations, and $f(z)$ is the solution given above, then $\frac{g(z)}{f(z)}$ is doubly-periodic, with only one pole within a fundamental parallelogram, at $z=a$, of order 1. In Problem 1 (Q2) we saw that there is no such function. Hence we cannot have a holomorphic solution.
Problem 7. Let $F(z)=\frac{A \theta(z-x) \theta(z+x)+B \theta(z-y) \theta(z+y)}{\theta(z)^{2}}$.
For any $c \in \mathbb{C}$, let $f(z)=\theta(z-c) \theta(z+c)$. Then, by the periodicity properties of $\theta(z)$, we have:

$$
f(z+1)=f(z) \quad \text { and } \quad f(z+\tau)=e^{-2 \pi \mathbf{i} \tau} e^{-4 \pi \mathbf{i} z} f(z)
$$

This implies that $F(z)$ is doubly-periodic.
Let us determine a choice of A, B which makes the numerator vanish at $z=0$.

$$
0=A \theta(-x) \theta(x)+B \theta(-y) \theta(y)=-A \theta(x)^{2}-B \theta(y)^{2}
$$

For instance, we can take $A=\theta(y)^{2}$ and $B=-\theta(x)^{2}$.
Now we know that $F(z)=\frac{\theta(y)^{2} \theta(z-x) \theta(z+x)-\theta(x)^{2} \theta(z-y) \theta(z+y)}{\theta(z)^{2}}$ is (i) doublyperiodic (ii) has no poles: if $F(z)$ were to have a pole, it must be at $z=0$ (within a fundamental parallelogram containing 0), where the order is either 0 or $1\left(\theta(z)^{2}\right.$ vanishes to order 2 at $z=0$, and the numerator vanishes to order at least 1 at $z=0$). The order of the pole at $z=0$ cannot possibly be 1 (see Problem 1 (Q2)), so it must be 0 - i.e, $F(z)$ has no poles.

Being holomorphic and doubly-periodic $F(z)=C$ is a constant.

$$
C=F(x)=\frac{-\theta(x)^{2} \theta(x-y) \theta(x+y)}{\theta(x)^{2}}=-\theta(x-y) \theta(x+y)
$$

Thus, Problem 7 gives us a proof of the following identity:

$$
\theta(y)^{2} \theta(z-x) \theta(z+x)-\theta(x)^{2} \theta(z-y) \theta(z+y)=-\theta(z)^{2} \theta(x-y) \theta(x+y)
$$

Note that this identity can be obtained from Fay's trisecant identity (Lecture 35, §35.2) by setting $\alpha=z, \gamma=0, \beta=x$ and $\delta=y$.

