COMPLEX ANALYSIS: PROBLEMS FOR e^z , $\sin(z)$, $\cos(z)$, $\ln(z)$, z^{α} .

Problem 1. Find all values of $z \in \mathbb{C}$ such that: (a) $e^z = 1 + \sqrt{3}$ i. (b) $e^z = -2$. (c) $e^z = 1 + i$. (d) $e^{2z+1} = 1$.

Problem 2. Prove the following:

(1)
$$\left(\frac{e}{2}\left(-1-\sqrt{3}\ \mathbf{i}\right)\right)^{3\pi\mathbf{i}} = -e^{2\pi^2}.$$

(2) $(1-\mathbf{i})^{4\mathbf{i}} = e^{\pi}\left(\cos(\ln(4)) + \mathbf{i}\sin(\ln(4))\right).$

Problem 3. Prove that $|e^{-z}| < 1$ if, and only if $\operatorname{Re}(z) > 0$.

Problem 4. Prove that $|e^{z^2}| \le e^{|z|^2}$ for every $z \in \mathbb{C}$.

Problem 5. Compute the limit, as $z \to 0$, of the following functions.

$$\frac{\sin(z)}{z}, \qquad \frac{e^z - e^{-z}}{z}$$

Problem 6. Identify the domains of the following functions. Then, compute their derivative with respect to z.

(a)
$$e^{z^2+2z}$$
. (b) $\ln(3z+1)$.
(c) z^{1-i} . (d) $z \ln(z)$.
(e) $(z^2+1)^{\frac{1}{2}}$. (f) $\ln(z^2-1)$.

Problem 7. Use the definition of sin(z), cos(z), for $z \in \mathbb{C}$, to prove the following trigonometric identities.

(1)
$$\cos(2z) = \cos^2(z) - \sin^2(z)$$
.

(2)
$$2\cos(z)\cos(w) = \cos(z+w) + \cos(z-w)$$
.

(3)
$$(1 - \cos(z - w))(1 - \cos(z + w)) = (\cos(z) - \cos(w))^2$$
.

Problem 8. (Optional, but fun!) Let C be a circle with center O. Let A and B two points on C. Prove that, for any point C on C different from A and B, one of the following must hold (depending on whether ACB is the long, or the short arc):

Either
$$\angle AOB = 2 \angle ACB$$
, or $\angle AOB = 2(\pi - \angle ACB)$