COMPLEX ANALYSIS: PROBLEM SHEET 1

In the problems below, \mathbb{C} is the set of complex numbers, $\mathbf{i}^2 = -1$, and \overline{z} is the conjugate of $z \in \mathbb{C}$.

Problem 1. Compute the real and imaginary parts of the following complex numbers: (a) $\frac{1}{\mathbf{i}}$, (b) $\frac{1-\mathbf{i}}{1+\mathbf{i}}$, (c) $\frac{2}{1-3\mathbf{i}}$, (d) $(1+\sqrt{3}\mathbf{i})^2$, (e) $(2-\mathbf{i})(3+\mathbf{i})$.

Problem 2. Compute the modulus and argument of the following complex numbers (make sure the argument you compute lies in the interval $(-\pi, \pi]$): (a) 3i, (b) 2-5i, (c) -1-i, (d) -2.

Problem 3. What is $\operatorname{Re}\left((1+\sqrt{3}\mathbf{i})^4\right)$?

Problem 4. Express $\cos(4\theta)$ in terms of $\cos(\theta)$ and $\sin(\theta)$. (*Hint: use de Moivre's*) *formula*)

Problem 5. Solve the following quadratic equations.

- (1) $z^2 (1 + \mathbf{i})z + \mathbf{i} = 0.$ (2) $z^2 + \mathbf{i}z + 1 = 0.$

Problem 6. Solve for all values of z in the following equations. Plot these roots in the complex plane.

(a) $z^3 = \mathbf{i}$, (b) $z^2 = 3 + 4\mathbf{i}$, (c) $z^8 = 1$, (d) $z^3 = -2 + 2\mathbf{i}$, (e) $z^4 = -4$.

Problem 7. Prove the following.

(1) For two complex numbers $z, w \in \mathbb{C}$: $\overline{zw} = \overline{z} \cdot \overline{w}$. (2) For $z \in \mathbb{C}$: $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$, and $\operatorname{Im}(z) = \frac{z - \overline{z}}{2\mathbf{i}}$. (3) For $z \neq 0$: $\left|\frac{1}{z}\right| = \frac{1}{|z|}$.

Problem 8. Prove the following identities:

(1) $|z+w|^2 = |z|^2 + |w|^2 + 2\operatorname{Re}(z\overline{w}).$ (2) $|z+w|^2 + |z-w|^2 = 2(|z|^2 + |w|^2).$

Problem 9.

- (1) For any complex number $\alpha \in \mathbb{C}$, prove that $-|\alpha| < \operatorname{Re}(\alpha) < |\alpha|$.
- (2) Use the previous part, and problem 8 above, to prove the triangle inequality: $|z+w| \leq |z|+|w|$, for every $z, w \in \mathbb{C}$.

PROBLEM SHEET 1

(3) Determine the conditions on z and w so that the triangle inequality becomes an equality.

Problem 10. Let $z \in \mathbb{C}$, $z \neq 1$ be such that $z^5 = 1$. Prove that $1 + z + z^2 + z^3 + z^4 = 0$.

Problem 11. Let *n* be a positive integer, $n \ge 2$, and let $\omega = \cos\left(\frac{2\pi}{n}\right) + \sin\left(\frac{2\pi}{n}\right)$ **i**. Prove that $1 + \omega + \omega^2 + \ldots + \omega^{n-1} = 0$.

Problem 12. Verify the following identity, for any two real numbers *a* and *b*:

$$(1 - \cos(a - b))(1 - \cos(a + b)) = (\cos(a) - \cos(b))^2$$

Problem 13. Let z and w be two non-zero complex numbers. Let θ be the angle that the line segment joining 0 and z forms with the line segment joining 0 and w. Prove that $\cos(\theta) = \frac{\operatorname{Re}(z\overline{w})}{|z||w|}$. (*Hint: think of the dot product of two vectors.*)

Problem 14. Sketch the subsets of the complex plane, described by the following:

(1)
$$\{z \in \mathbb{C} \text{ such that } |z-3| < 4\}.$$

- (2) $\{z \in \mathbb{C} \text{ such that } |z-2|+|z+2|=5\}.$
- (3) $\{z \in \mathbb{C} \text{ such that } \operatorname{Re}(z^2) = 1\}.$
- (4) $\{z \in \mathbb{C} \text{ such that } \operatorname{Im}(z^2) = 2\}.$
- (5) $\{z \in \mathbb{C} \text{ such that } 0 < \operatorname{Re}(\mathbf{i}z) < 1\}.$

 $\mathbf{2}$