COMPLEX ANALYSIS: PROBLEM SHEET 1

In the problems below, \mathbb{C} is the set of complex numbers, $\mathbf{i}^{2}=-1$, and \bar{z} is the conjugate of $z \in \mathbb{C}$.

Problem 1. Compute the real and imaginary parts of the following complex numbers:
(a) $\frac{1}{\mathrm{i}}$,
b) $\frac{1-i}{1+i}$,
(c) $\frac{2}{1-3 \mathbf{i}}$,
(d) $(1+\sqrt{3} \mathbf{i})^{2},(e)(2-\mathbf{i})(3+\mathbf{i})$.

Problem 2. Compute the modulus and argument of the following complex numbers (make sure the argument you compute lies in the interval $(-\pi, \pi])$:
(a) $3 \mathbf{i}$, (b) $2-5 \mathbf{i}$, (c) $-1-\mathbf{i}$, (d) -2 .

Problem 3. What is $\operatorname{Re}\left((1+\sqrt{3} \mathbf{i})^{4}\right)$?
Problem 4. Express $\cos (4 \theta)$ in terms of $\cos (\theta)$ and $\sin (\theta)$. (Hint: use de Moivre's formula)

Problem 5. Solve the following quadratic equations.
(1) $z^{2}-(1+\mathbf{i}) z+\mathbf{i}=0$.
(2) $z^{2}+\mathbf{i} z+1=0$.

Problem 6. Solve for all values of z in the following equations. Plot these roots in the complex plane.
(a) $z^{3}=\mathbf{i}$, (b) $z^{2}=3+4 \mathbf{i}$, (c) $z^{8}=1$, (d) $z^{3}=-2+2 \mathbf{i}$, (e) $z^{4}=-4$.

Problem 7. Prove the following.
(1) For two complex numbers $z, w \in \mathbb{C}: \overline{z w}=\bar{z} \cdot \bar{w}$.
(2) For $z \in \mathbb{C}: \operatorname{Re}(z)=\frac{z+\bar{z}}{2}$, and $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 \mathbf{i}}$.
(3) For $z \neq 0:\left|\frac{1}{z}\right|=\frac{1}{|z|}$.

Problem 8. Prove the following identities:
(1) $|z+w|^{2}=|z|^{2}+|w|^{2}+2 \operatorname{Re}(z \bar{w})$.
(2) $|z+w|^{2}+|z-w|^{2}=2\left(|z|^{2}+|w|^{2}\right)$.

Problem 9.

(1) For any complex number $\alpha \in \mathbb{C}$, prove that $-|\alpha| \leq \operatorname{Re}(\alpha) \leq|\alpha|$.
(2) Use the previous part, and problem 8 above, to prove the triangle inequality: $|z+w| \leq|z|+|w|$, for every $z, w \in \mathbb{C}$.
(3) Determine the conditions on z and w so that the triangle inequality becomes an equality.

Problem 10. Let $z \in \mathbb{C}, z \neq 1$ be such that $z^{5}=1$. Prove that $1+z+z^{2}+z^{3}+z^{4}=0$.
Problem 11. Let n be a positive integer, $n \geq 2$, and let $\omega=\cos \left(\frac{2 \pi}{n}\right)+\sin \left(\frac{2 \pi}{n}\right) \mathbf{i}$.
Prove that $1+\omega+\omega^{2}+\ldots+\omega^{n-1}=0$.
Problem 12. Verify the following identity, for any two real numbers a and b :

$$
(1-\cos (a-b))(1-\cos (a+b))=(\cos (a)-\cos (b))^{2} .
$$

Problem 13. Let z and w be two non-zero complex numbers. Let θ be the angle that the line segment joining 0 and z forms with the line segment joining 0 and w. Prove that $\cos (\theta)=\frac{\operatorname{Re}(z \bar{w})}{|z||w|}$. (Hint: think of the dot product of two vectors.)
Problem 14. Sketch the subsets of the complex plane, described by the following:
(1) $\{z \in \mathbb{C}$ such that $|z-3|<4\}$.
(2) $\{z \in \mathbb{C}$ such that $|z-2|+|z+2|=5\}$.
(3) $\left\{z \in \mathbb{C}\right.$ such that $\left.\operatorname{Re}\left(z^{2}\right)=1\right\}$.
(4) $\left\{z \in \mathbb{C}\right.$ such that $\left.\operatorname{Im}\left(z^{2}\right)=2\right\}$.
(5) $\{z \in \mathbb{C}$ such that $0<\operatorname{Re}(\mathbf{i} z)<1\}$.

