COMPLEX ANALYSIS: PROBLEM SHEET 2

Problem 1. For each of the following subsets of \mathbb{C}, determine whether it is open, closed, or neither.
(a) $|z-2+\mathbf{i}| \leq 1$
(b) $|2 z+3|>4$
(c) $\operatorname{Im}\left(\frac{1}{z}\right)>1(z \neq 0)$
(d) $\operatorname{Im}(z) \neq 0$.
(e) $0 \leq \arg (z) \leq \frac{\pi}{2}(z \neq 0)$
(f) $\mathbb{C} \backslash \mathbb{Z}(=\{z \in \mathbb{C}: z$ is not an integer $\})$

Problem 2. For the subsets given in Problem 1 above, determine whether they are bounded or not.

Problem 3. Sketch the following subset of \mathbb{C} and determine whether it is connected or not: $\operatorname{Re}\left(z^{2}\right)>1$.

Problem 4. In the following problems, a subset $S \subset \mathbb{C}$ and a point $z_{0} \in \mathbb{C}$ are given. Determine whether z_{0} is an accumulation point of S or not.
(a) $S=\left\{\frac{1}{n}: n=1,2,3 \ldots\right\}, z_{0}=0$.
(b) $S=\left\{0 \leq \arg (z) \leq \frac{\pi}{2}, z \neq 0\right\}, z_{0}=0$.
(c) $S=\mathbb{Z}, z_{0}=\mathbf{i}$.
(d) $S=\{\operatorname{Im}(z) \neq 0\}, z_{0}=1$.

Problem 5. Let $S \subset \mathbb{C}$ be such that every accumulation point of S is in S. Prove that S is closed.

Problem 6. Let $S \subset \mathbb{C}$ be a finite subset: $S=\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$. Prove that S has no accumulation points.

Problem 7. Compute the following limits. (Use the results of Section 5.3, Lecture 5).
(a) $\lim _{z \rightarrow 0} \frac{z^{2}-2}{z+\mathbf{i}}$
(b) $\lim _{z \rightarrow 1+\mathbf{i}} \frac{z+\mathbf{i}}{z^{2}+2}$
(c) $\lim _{z \rightarrow-2} \frac{1}{z^{3}}$
(d) $\lim _{z \rightarrow \mathbf{i}} \frac{\mathbf{i} z^{3}-1}{z+\mathbf{i}}$

Problem 8. Verify that the following limits do not exist: (See the argument in Section 5.2, Lecture 5). (a) $\lim _{z \rightarrow 0} \frac{\bar{z}}{|z|}$, (b) $\lim _{z \rightarrow 0} \frac{\operatorname{Im}\left(z^{2}\right)}{|z|^{2}}$.

$$
\text { In problems } 9 \text { and 10, use Definition (4.3) from Lecture } 4 .
$$

Problem 9. Let $f(z)$ and $g(z)$ be two functions of a complex variable. Assume that the following two statements are true:
(1) $\lim _{z \rightarrow z_{0}} f(z)=0$.
(2) There exists $M>0$ and $r>0$ such that $|g(z)|<M$ for every $z \in D^{\times}\left(z_{0} ; r\right)$. Recall: $D^{\times}(\alpha ; r)=\{w \in \mathbb{C}: 0<|w-\alpha|<r\}$ is the punctured disc.
Prove that $\lim _{z \rightarrow z_{0}} f(z) g(z)=0$.
Problem 10. Let $f(z)$ and $g(z)$ be two functions of a complex variable. Assume that the following two limits exist:

$$
\lim _{z \rightarrow z_{0}} f(z)=A, \quad \lim _{z \rightarrow z_{0}} g(z)=B
$$

Prove the following:
(1) $\lim _{z \rightarrow z_{0}}(f(z)+g(z))=A+B$.
(2) $\lim _{z \rightarrow z_{0}} f(z) g(z)=A B$.

Problem 11. Let $f(z)$ be a function of a complex variable. Assume that the following limit exists: $\lim _{z \rightarrow z_{0}} f(z)=A$. Prove the following:
(1) $\lim _{z \rightarrow z_{0}} \overline{f(z)}=\bar{A}$.
(2) $\lim _{z \rightarrow z_{0}}|f(z)|^{2}=|A|^{2}$.

Problem 12. For each of the following functions, check if the Cauchy-Riemann equations hold. Here $x=\operatorname{Re}(z)$ and $y=\operatorname{Im}(z)$.
(1) $f(z)=x^{2}+y^{2}+2 x y \mathbf{i}$.
(2) $f(z)=e^{x} \cos (y)+e^{x} \sin (y) \mathbf{i}$.

Problem 13. For each function $f(z)$ below, write $f(z)=u(x, y)+v(x, y) \mathbf{i}$, where $x=\operatorname{Re}(z)$ and $y=\operatorname{Im}(z)$. Check the Cauchy-Riemann equations.
(1) $f(z)=z^{2}+\bar{z}$.
(2) $f(z)=\frac{1}{z}$.

