COMPLEX ANALYSIS: PROBLEM SHEET 2

Problem 1. For each of the following subsets of \mathbb{C} , determine whether it is open, closed, or neither.

(a)
$$|z - 2 + \mathbf{i}| \le 1$$
 (b) $|2z + 3| > 4$
(c) $\operatorname{Im}\left(\frac{1}{z}\right) > 1 \ (z \neq 0)$ (d) $\operatorname{Im}(z) \neq 0$.
(e) $0 \le \arg(z) \le \frac{\pi}{2} \ (z \neq 0)$ (f) $\mathbb{C} \setminus \mathbb{Z}$ (= { $z \in \mathbb{C} : z \text{ is not an integer}$ })

Problem 2. For the subsets given in Problem 1 above, determine whether they are bounded or not.

Problem 3. Sketch the following subset of \mathbb{C} and determine whether it is connected or not: $\operatorname{Re}(z^2) > 1$.

Problem 4. In the following problems, a subset $S \subset \mathbb{C}$ and a point $z_0 \in \mathbb{C}$ are given. Determine whether z_0 is an accumulation point of S or not.

(a) $S = \left\{ \frac{1}{n} : n = 1, 2, 3... \right\}, z_0 = 0.$ (b) $S = \{ 0 \le \arg(z) \le \frac{\pi}{2}, z \ne 0 \}, z_0 = 0.$ (c) $S = \mathbb{Z}, z_0 = \mathbf{i}.$

(d)
$$S = {\text{Im}(z) \neq 0}, z_0 = 1.$$

Problem 5. Let $S \subset \mathbb{C}$ be such that every accumulation point of S is in S. Prove that S is closed.

Problem 6. Let $S \subset \mathbb{C}$ be a finite subset: $S = \{z_1, z_2, \ldots, z_n\}$. Prove that S has no accumulation points.

Problem 7. Compute the following limits. (Use the results of Section 5.3, Lecture 5).

(a)
$$\lim_{z \to 0} \frac{z^2 - 2}{z + i}$$
 (b) $\lim_{z \to 1 + i} \frac{z + i}{z^2 + 2}$
(c) $\lim_{z \to -2} \frac{1}{z^3}$ (d) $\lim_{z \to i} \frac{iz^3 - 1}{z + i}$

Problem 8. Verify that the following limits do not exist: (See the argument in Section 5.2, Lecture 5). (a) $\lim_{z\to 0} \frac{\overline{z}}{|z|}$, (b) $\lim_{z\to 0} \frac{\operatorname{Im}(z^2)}{|z|^2}$.

PROBLEM SHEET 2

In problems 9 and 10, use Definition (4.3) from Lecture 4.

Problem 9. Let f(z) and g(z) be two functions of a complex variable. Assume that the following two statements are true:

- (1) $\lim_{z \to z_0} f(z) = 0.$
- (2) There exists M > 0 and r > 0 such that |g(z)| < M for every $z \in D^{\times}(z_0; r)$. Recall: $D^{\times}(\alpha; r) = \{w \in \mathbb{C} : 0 < |w - \alpha| < r\}$ is the punctured disc.

Prove that $\lim_{z \to z_0} f(z)g(z) = 0.$

Problem 10. Let f(z) and g(z) be two functions of a complex variable. Assume that the following two limits exist:

$$\lim_{z \to z_0} f(z) = A, \qquad \lim_{z \to z_0} g(z) = B.$$

Prove the following:

(1) $\lim_{z \to z_0} (f(z) + g(z)) = A + B.$ (2) $\lim_{z \to z_0} f(z)g(z) = AB$

(2)
$$\lim_{z \to z_0} f(z)g(z) = AB$$

Problem 11. Let f(z) be a function of a complex variable. Assume that the following limit exists: $\lim_{z \to z_0} f(z) = A$. Prove the following:

(1) $\lim_{z \to z_0} \overline{f(z)} = \overline{A}.$ (2) $\lim_{z \to z_0} |f(z)|^2 = |A|^2.$

Problem 12. For each of the following functions, check if the Cauchy–Riemann equations hold. Here x = Re(z) and y = Im(z).

(1)
$$f(z) = x^2 + y^2 + 2xy\mathbf{i}$$
.

(2)
$$f(z) = e^x \cos(y) + e^x \sin(y)\mathbf{i}$$
.

Problem 13. For each function f(z) below, write $f(z) = u(x, y) + v(x, y)\mathbf{i}$, where $x = \operatorname{Re}(z)$ and $y = \operatorname{Im}(z)$. Check the Cauchy–Riemann equations.

(1)
$$f(z) = z^2 + \overline{z}$$
.

$$(2) f(z) = \frac{1}{z}.$$