## COMPLEX ANALYSIS: PROBLEM SHEET 3

Problem 1. For the following functions, compute the derivative $f^{\prime}(z)$.
(a) $f(z)=\frac{z}{z-1}$.
(b) $f(z)=z^{2}+1+z^{-2}$.
(c) $f(z)=\left(\frac{z+1}{z-\mathbf{i}}\right)^{6}$.
(d) $f(z)=\frac{z^{2}+2 z}{z^{3}}$.
(e) $f(z)=3 z^{2}-2 z+4$.
(f) $f(z)=\left(2 z^{2}+\mathbf{i}\right)^{5}$.

Problem 2. For each of the functions below, verify that the Cauchy-Riemann equations hold. Then, compute the derivative $\left(f^{\prime}(z)=u_{x}+v_{x} \mathbf{i}=v_{y}-u_{y} \mathbf{i}\right.$.)
(a) $(2-y)+x \mathbf{i}$.
(b) $x^{3}-3 x y^{2}+\left(3 x^{2} y-y^{3}\right) \mathbf{i}$.
(c) $\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}} \mathbf{i}$.
(d) $e^{x} \cos (y)+e^{x} \sin (y) \mathbf{i}$.

Problem 3. Let $u(x, y)=x^{2}-y^{2}+x$.
(a) Verify that the Laplace equation holds for $u(x, y)$. Recall: The Laplace equation for $u(x, y)$ is: $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
(b) Compute a function $v(x, y)$ so that $f(z)=u(x, y)+v(x, y) \mathbf{i}$ is $\mathbb{C}$-differentiable.
(c) Write the function from the previous part in terms of $z$ (and $\bar{z}$, but since it is $\mathbb{C}$-differentiable, there should not be any dependence on $\bar{z}$ ).

Problem 4. Let $u(x, y)=\frac{x}{x^{2}+y^{2}}$. Redo (a)-(c) of Problem 3 with this function.
Problem 5. Let $u(x, y)+v(x, y)$ i be a $\mathbb{C}$-differentiable function. Prove that the following two vectors are orthogonal:

$$
\vec{\nabla} u=\left\langle\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right\rangle ; \quad \vec{\nabla} v=\left\langle\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}\right\rangle .
$$

This problem proves that, for any two real constants $a, b$, the level curves $u(x, y)=a$ and $v(x, y)=b$, wherever they meet, they meet at right angles.

Problem 6. Consider the change of variables from Cartesian to polar coordinates (valid on the open set $\mathbb{C}^{\times}:=\mathbb{C} \backslash\{0\}$ ).

$$
x=r \cos (\theta) \quad \text { and } \quad y=r \sin (\theta)
$$

Verify that the Cauchy-Riemann equations in $(r, \theta)$ variables take the following form:

$$
r \frac{\partial u}{\partial r}=\frac{\partial v}{\partial \theta} \quad \text { and } \quad \frac{\partial u}{\partial \theta}=-r \frac{\partial v}{\partial r}
$$

Problem 7. Use Problem 6 to verify that the following function is $\mathbb{C}$-differentiable, on the open set $\Omega=\{z \in \mathbb{C}: z \neq 0,-\pi<\arg (z)<\arg (z)\}$ (this is just the complex plane, with the negative real axis removed):

$$
f(z)=\ln (r)+\theta \mathbf{i}
$$

Prove that $f^{\prime}(z)=\frac{1}{z}$.
Problem 8. Prove that the Laplace equation for a real-valued function $g(x, y)$ of two real variables, takes the following form when written in polar coordinates $(r, \theta)$.

$$
\frac{\partial^{2} g}{\partial r^{2}}+\frac{1}{r} \frac{\partial g}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} g}{\partial \theta^{2}}=0
$$

Problem 9. Use Problem 8 to prove that any solution $g(r, \theta)$ of the Laplace equation, which is independent of $\theta$, has to be of the following form: $g(r, \theta)=C_{1} \ln (r)+C_{2}$, where $C_{1}, C_{2} \in \mathbb{R}$ are arbitrary constants.

Problem 10. Let $f(z)=u(x, y)+v(x, y)$ i be a $\mathbb{C}$-differentiable function. Assume that $u(x, y)=C \in \mathbb{R}$ is a constant function. Prove that $f(z)$ is also a constant function.

Problem 11. Let $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$ be a polynomial of degree $n$. Here $n \in \mathbb{Z}_{\geq 0}$ and $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{C}$ are fixed complex numbers, with $a_{n} \neq 0$. Prove that, for each $k=0,1, \ldots, n$, we have:

$$
a_{k}=\frac{P^{(k)}(0)}{k!}
$$

$P^{(k)}(z)$ is the $k^{\text {th }}$ derivative of $P(z)$ :

$$
P^{(0)}(z)=P(z), P^{(1)}(z)=P^{\prime}(z), P^{(2)}(z)=P^{\prime \prime}(z), \ldots \text { and so on. }
$$

$k!=1 \cdot 2 \cdot \ldots \cdot k$ is the factorial.

