COMPLEX ANALYSIS: PROBLEM SHEET 3

Problem 1. For the following functions, compute the derivative f'(z).

(a)
$$f(z) = \frac{z}{z-1}$$
. (b) $f(z) = z^2 + 1 + z^{-2}$
(c) $f(z) = \left(\frac{z+1}{z-\mathbf{i}}\right)^6$. (d) $f(z) = \frac{z^2 + 2z}{z^3}$.
(e) $f(z) = 3z^2 - 2z + 4$. (f) $f(z) = (2z^2 + \mathbf{i})^5$.

Problem 2. For each of the functions below, verify that the Cauchy–Riemann equations hold. Then, compute the derivative $(f'(z) = u_x + v_x \mathbf{i} = v_y - u_y \mathbf{i})$

(a)
$$(2-y) + x\mathbf{i}$$
.
(b) $x^3 - 3xy^2 + (3x^2y - y^3)\mathbf{i}$.
(c) $\frac{x^2 - y^2}{(x^2 + y^2)^2} - \frac{2xy}{(x^2 + y^2)^2}\mathbf{i}$.
(d) $e^x \cos(y) + e^x \sin(y)\mathbf{i}$.

Problem 3. Let $u(x, y) = x^2 - y^2 + x$.

- (a) Verify that the Laplace equation holds for u(x, y). Recall: The Laplace equation for u(x, y) is: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} = 0.$
- (b) Compute a function v(x, y) so that $f(z) = u(x, y) + v(x, y)\mathbf{i}$ is \mathbb{C} -differentiable.
- (c) Write the function from the previous part in terms of z (and \overline{z} , but since it is \mathbb{C} -differentiable, there should not be any dependence on \overline{z}).

Problem 4. Let $u(x,y) = \frac{x}{x^2 + y^2}$. Redo (a)–(c) of Problem 3 with this function.

Problem 5. Let $u(x, y) + v(x, y)\mathbf{i}$ be a \mathbb{C} -differentiable function. Prove that the following two vectors are orthogonal:

$$\vec{\nabla}u = \left\langle \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} \right\rangle; \qquad \vec{\nabla}v = \left\langle \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y} \right\rangle$$

This problem proves that, for any two real constants a, b, the level curves u(x, y) = aand v(x, y) = b, wherever they meet, they meet at right angles.

Problem 6. Consider the change of variables from Cartesian to polar coordinates (valid on the open set $\mathbb{C}^{\times} := \mathbb{C} \setminus \{0\}$).

$$x = r\cos(\theta)$$
 and $y = r\sin(\theta)$.

Verify that the Cauchy–Riemann equations in (r, θ) variables take the following form:

$$r\frac{\partial u}{\partial r} = \frac{\partial v}{\partial \theta}$$
 and $\frac{\partial u}{\partial \theta} = -r\frac{\partial v}{\partial r}.$

Problem 7. Use Problem 6 to verify that the following function is \mathbb{C} -differentiable, on the open set $\Omega = \{z \in \mathbb{C} : z \neq 0, -\pi < \arg(z) < \arg(z)\}$ (this is just the complex plane, with the negative real axis removed):

$$f(z) = \ln(r) + \theta \mathbf{i}.$$

Prove that $f'(z) = \frac{1}{z}$.

Problem 8. Prove that the Laplace equation for a real-valued function g(x, y) of two real variables, takes the following form when written in polar coordinates (r, θ) .

$$\frac{\partial^2 g}{\partial r^2} + \frac{1}{r} \frac{\partial g}{\partial r} + \frac{1}{r^2} \frac{\partial^2 g}{\partial \theta^2} = 0.$$

Problem 9. Use Problem 8 to prove that any solution $g(r, \theta)$ of the Laplace equation, which is independent of θ , has to be of the following form: $g(r, \theta) = C_1 \ln(r) + C_2$, where $C_1, C_2 \in \mathbb{R}$ are arbitrary constants.

Problem 10. Let $f(z) = u(x, y) + v(x, y)\mathbf{i}$ be a \mathbb{C} -differentiable function. Assume that $u(x, y) = C \in \mathbb{R}$ is a constant function. Prove that f(z) is also a constant function.

Problem 11. Let $P(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n$ be a polynomial of degree n. Here $n \in \mathbb{Z}_{\geq 0}$ and $a_0, a_1, \ldots, a_n \in \mathbb{C}$ are fixed complex numbers, with $a_n \neq 0$. Prove that, for each $k = 0, 1, \ldots, n$, we have:

$$a_k = \frac{P^{(k)}(0)}{k!}.$$

 $P^{(k)}(z)$ is the k^{th} derivative of P(z):

$$P^{(0)}(z) = P(z), P^{(1)}(z) = P'(z), P^{(2)}(z) = P''(z), \dots$$
 and so on.

 $k! = 1 \cdot 2 \cdot \ldots \cdot k$ is the factorial.