COMPLEX ANALYSIS: PROBLEM SHEET 4

Problem 1. Let $\phi \in (0, 2\pi]$. Compute the length of the arc of the circle of radius R, centered at 0, between angles 0 to ϕ . (Use the parametrization: $\gamma(\theta) = Re^{i\theta}$, $0 \le \theta \le \phi$.)

Problem 2. Let $\gamma : [0,1] \to \mathbb{C}$ be any piecewise smooth path joining 0 to 1 + 3i. Compute the following:

(a)
$$\int_{\gamma} \cos(z) dz$$
, (b) $\int_{\gamma} \sin(z^2) z dz$, (c) $\int_{\gamma} e^{2z} dz$,
(d) $\int_{\gamma} z^3 + 2 dz$, (e) $\int_{\gamma} (z^2 + 1)^2 dz$.

Problem 3. Let $k \in \mathbb{Z}$. Prove that:

$$\int_0^{2\pi} e^{\mathbf{i}k\theta} \, d\theta = \begin{cases} 0 & \text{if } k \neq 0, \\ 2\pi & \text{if } k = 0. \end{cases}$$

Problem 4. Let f(z) be a continuous function defined on an open, connected subset $\Omega \subseteq \mathbb{C}$. Let $\gamma : [a, b] \to \Omega$ be a smooth path, and let $\tau : [0, 1] \to [a, b]$ be a smooth function. Define $\tilde{\gamma} : [0, 1] \to \Omega$ as $\tilde{\gamma}(t) = \gamma(\tau(t))$. Prove that

$$\int_{\widetilde{\gamma}} f(z) \, dz = \int_{\gamma} f(z) \, dz.$$

In Problems 5-12 below: (a) sketch γ , (b) compute $\int_{\gamma} f(z) dz$.

Problem 5. $f(z) = \operatorname{Re}(z)$, and $\gamma(t) = Re^{it}$, $0 \le t \le 2\pi$.

Problem 6. f(z) = Im(z), and $\gamma(t) = Re^{it}$, $0 \le t \le 2\pi$.

Problem 7. $f(z) = y - x - (3x^2)\mathbf{i}$, where $z = x + y\mathbf{i}$, and

$$\gamma(t) = \begin{cases} t\mathbf{i}, & \text{if } 0 \le t \le 1, \\ (t-1) + \mathbf{i}, & \text{if } 1 \le t \le 2, \\ (3-t)(1+\mathbf{i}), & \text{if } 2 \le t \le 3. \end{cases}$$

Problem 8. $f(z) = \overline{z}$ and $\gamma(\theta) = 2e^{i\theta}, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

Problem 9. $f(z) = 2 \operatorname{Re}(z) + \operatorname{Im}(z)$, and $\gamma(t) = t(1 + \mathbf{i}), 0 \le t \le 1$.

Problem 10. Let $n \in \mathbb{Z}$, $z_0 \in \mathbb{C}$, $R \in \mathbb{R}_{>0}$. $f(z) = (z - z_0)^{n-1}$, and $\gamma(\theta) = z_0 + Re^{i\theta}, 0 \le \theta \le 2\pi$. **Problem 11.** $f(z) = \frac{1}{z}$, and $\gamma(t) = 1 + t\mathbf{i}$, $-1 \le t \le 1$.

Problem 12. Let $r \in \mathbb{R}_{>0}$ and $\phi \in (-\pi, \pi)$.

$$f(z) = \frac{1}{z}$$
, and $\gamma(t) = (1 + t(r-1))e^{it\phi}$, $0 \le t \le 1$.

Bonus. Let γ be a positively oriented contour. Let S be the area of the interior of γ . Prove that

$$\int_{\gamma} \operatorname{Re}(z) dz = \mathbf{i}S, \text{ and } \int_{\gamma} \operatorname{Im}(z) dz = -S.$$

This is a generalization of Problems 5,6 above. Hint: Green's theorem, or recall how area enclosed by a curve was defind in Calculus I/II.