
PROBLEM SHEET 6 - SOLUTIONS

Problem 1. Prove that
∞∑
n=1

1

n2
converges.

Solution 1. Use the integral test:
∞∑
n=2

1

n2
<

∫ ∞
1

1

x2
dx = 1. Hence

∞∑
n=1

1

n2
< 1 + 1 = 2

converges.
Solution 2. (Cauchy’s criterion). Note the following inequalities:

1

22
+

1

32
<

2

22
=

1

2
,

1

42
+

1

52
+

1

62
+

1

72
<

4

42
=

1

4

Continuing this way, we have, for every k ≥ 1:

1

(2k)2
+

1

(2k + 1)2
+ · · ·+ 1

(2k+1 − 1)2
<

1

2k
.

So, for the infinite series:

1

(2k)2
+

1

(2k + 1)2
+ · · · < 1

2k
+

1

2k+1
+ · · · = 1

2k−1
.

Now, given any ε > 0, take ` > 1 large enough so that 1
2`−1 < ε. Let N = 2`. Then,

for every n ≥ N and p ≥ 0, we have:

1

n2
+

1

(n+ 1)2
+ · · ·+ 1

(n+ p)2
<

1

N2
+

1

(N + 1)2
+ · · · < 1

2`−1
< ε.

So, Cauchy’s criterion is met, and hence the series is convergent.

Remark. The exact value of this series is π2

6
. It was computed by Euler in 1734, using

the infinite product expression of sin(z), which we will see in Lecture 29.

Problem 2. Find the radius of convergence of the following series.

(a)
∞∑
n=0

7nzn. Ratio of successive coefficients is 7. So radius of convergence is 1
7
.

(b)
∞∑
n=1

nnzn. Limit of the ratio of successive coefficients:

lim
n→∞

(n+ 1)n+1

nn
= lim

n→∞
(n+ 1) ·

(
1 +

1

n

)n
=∞ · e =∞

So, radius of convergence is 0.

(c)
∞∑
n=1

zn

n2
. Again, take the limit: lim

n→∞

n2

(n+ 1)2
= 1. So, radius of convergence is 1.
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2 SOLUTIONS

Problem 3. Let a, b, c ∈ C be complex numbers such that c 6∈ Z≥0. The following
power series is called hypergeometric series.

F (a, b; c; z) = 1 +
∞∑
n=1

a(a+ 1) · · · (a+ n− 1)b(b+ 1) · · · (b+ n− 1)

c(c+ 1) · · · (c+ n− 1)

zn

n!
.

Prove that: (i) If a, b ∈ Z≤0, then the radius of convergence of F (a, b; c; z) is ∞. (ii) If
a, b 6∈ Z≤0, then its radius of convergence is 1.
Solution. (i) If either a or b is in Z≤0, the series is just a polynomial, hence has ∞
radius of convergence.
(ii) Assuming none of a, b, c are non–positive integers. We apply ratio test again:

lim
n→∞

(a+ n)(b+ n)

(c+ n)(n+ 1)
= 1. Hence, radius of convergence is 1.

Problem 4. Prove that ln(1− z) = −
∞∑
n=1

zn

n
, for every z ∈ D(0; 1).

Solution. Since ln(1 − z) is an antiderivative of
−1

1− z
= −

∞∑
k=0

zk, for |z| < 1, we get

(by taking termwise antiderivative, which does not change the radius of convergence):

ln(1− z) = C −
∞∑
k=0

zk+1

k + 1
, for |z| < 1.

To fix the constant, set z = 0, to get C = 0.

Problem 5. For any ` ∈ Z≥0, prove that:

1

(1− z)`+1
=
∞∑
k=0

(
k + `
`

)
zk for every z ∈ D(0; 1).

Solution. We will prove it by induction on `. The base case is ` = 0:
1

1− z
=

∞∑
k=0

zk for every z ∈ D(0; 1). This was already proved in Lecture 23, (23.2) Example.

Now assume that the statement is known to hold for ` = n ∈ Z≥0:

1

(1− z)n+1
=
∞∑
k=0

(
k + n
n

)
zk for every z ∈ D(0; 1).

Let us try to prove it for n+ 1. Take derivative of this equation to get (for every z ∈ C
such that |z| < 1):

(n+ 1)

(1− z)n+2
=
∞∑
k=1

k
(n+ k)!

k!n!
zk−1 ⇒ 1

(1− z)n+2
=
∞∑
k=1

(n+ k)!

(k − 1)!(n+ 1)!
zk−1
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Set j = k − 1 to get:
1

(1− z)n+2
=

∞∑
j=0

(
n+ j + 1
n+ 1

)
zj. The induction step holds,

and finishes the proof.

Problem 6. Let
∞∑
k=0

akz
k be a power series with radius of convergence R > 0.

(1) Prove that the radius of convergence of
∞∑
k=0

ak
zk+1

k + 1
is ≥ R.

(2) Prove that the radius of convergence of
∞∑
k=0

ak
zk

k!
is ∞.

Solution 1 (ratio test). If
1

R
= lim

n→∞

|an+1|
|an|

, then: lim
n→∞

|an+1|
n+ 1

n

|an|
=

1

R
, so, the series

∞∑
k=0

ak
k + 1

zk has radius of convergence R as well.

Similarly, lim
n→∞

|an+1|
(n+ 1)!

n!

|an|
= lim

n→∞

|an+1|
|an|

1

n+ 1
= 0. So, the radius of convergence of

∞∑
k=0

ak
k!
zk is ∞.

Solution 2. R > 0 is the radius of convergence of
∞∑
k=0

akz
k. This means:

• For any 0 ≤ r < R, we can find a constant M such that |an|rn < M , for every
n ≥ 0.

• If r > R, then the sequence of numbers {|an|rn}∞n=0 is unbounded.

(1) Consider the series
∞∑
k=0

ak
k + 1

zk. For any 0 ≤ r < R, let M be the constant so that

|an|rn < M for every n ≥ 0. Then:

|an|
n+ 1

rn < |an|rn < M.

So the radius of convergence of the new series is at least R.

(2) Now consider the series
∞∑
k=0

ak
k!
zk. Fix a positive number 0 < ρ < R, and take M1

to be the constant as promised above, for ρ: |an|ρn < M1 for every n ≥ 0.
We want to show that the radius of convergence of the new series is∞. Meaning, given

any r ∈ R>0, we have to produce a constant M so that
|an|
n!

rn < M , for every n ≥ 0.

We have:
|an|
n!

rn <
M1

ρn
rn

n!
= M1

tn

n!
, where t =

r

ρ
∈ R>0.
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Since
tn

n!
→ 0, as n → ∞, we can find (using the definition of the limit, with ε = 1)

N > 0 such that
tn

n!
< 1 for every n ≥ N . This gives us a bound on infinitely many

terms:
|an|
n!

rn < M1, for every n ≥ N . Now we just pick the largest number among

the left–over finitely many terms:

M > Max

{
|a0|,

|a1|
1!
r, . . . ,

|aN−1|
(N − 1)!

rN−1,M1

}
,

so that
|an|
n!

rn < M , for every n ≥ 0.

Problem 7. Find the mistake in the following calculation.

1

1− z
=
∞∑
k=0

zk and
1

1− z
= −1

z
· 1

1− z−1
= −

∞∑
`=0

z−`−1.

Taking the difference we get: 0 =
∞∑
k=0

zk +
∞∑
`=0

z−`−1.

Compare coefficient of (say) z to get 0 = 1.

Solution. The first identity
1

1− z
=

∞∑
k=0

zk holds for |z| < 1, while the second

1

1− z
= −

∞∑
`=0

z−`−1 for |z| > 1. Therefore, we cannot take the difference, since it

will yield an identity which holds for no complex number at all!

Problem 8. Let
∞∑
k=0

2k

k
z−k be a power series centered at ∞. What is its radius of

convergence?
Solution. Again, by ratio test, the series converges for z ∈ C such that |z−1| < 1

2
, that

is, |z| > 2. According to the notation of Lecture 23, §23.6: {|z| > 2} = D(∞; 1/2), so
the radius of convergence is 1

2
.

Problem 9. Compute the Taylor series expansion of cos(z), around 0, in the following
two ways:

(1) By computing
dn

dzn
(cos(z)) at z = 0.

Solution. f(z) = cos(z) gives f ′(z) = − sin(z), f ′′(z) = − cos(z) and so on.
Hence we get f (2k+1)(0) = 0 and f (2k)(0) = (−1)k. So, the Taylor series expan-

sion of cos(z) is:
∞∑
k=0

(−1)k
z2k

2k!
.
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(2) Using cos(z) =
eiz + e−iz

2
and the Taylor series of ez.

Solution. Taylor series of the exponential function gives us:

eiz = 1 + iz − z2

2!
− i

z3

3!
+ · · · and e−iz = 1− iz − z2

2!
+ i

z3

3!
+ · · ·

Hence, cos(z) =
eiz + e−iz

2
= 1− z2

2!
+
z4

4!
− z6

6!
+ · · ·

Problem 10. Compute the Taylor series expansion, and determine its radius of con-
vergence:

(a) ez centered at 1. ez = e(z−1)+1 = e ·
∞∑
k=0

(z − 1)k

k!
. Radius of convergence =∞, since

ez is defined on disc of any radius around 1.

(b)
z

z2 + 4
centered at 0.

z

4

1

1− −z2
4

=
∞∑
n=0

(−1)n
z2n+1

4n+1
. Radius of convergence is 2,

since the nearest singularity (to 0) of
z

z2 + 4
is ±2i, whose distance is 2 (that is, 2 is

the largest number r such that D(0; r) is still inside the domain of our function).

(c)
ez

(1− z)2
centered at 0. (Radius of convergence is going to be 1, by the same argu-

ment as in (b)). Since ez =
∞∑
k=0

zk

k!
and 1

(1−z)2 =
∑∞

`=0(` + 1)z` (by Problem 5 above),

we can just multiply the two power series to get:

ez

(1− z)2
=
∞∑
n=0

(
n∑
`=0

`+ 1

(n− `)!

)
zn.

Problem 11. For f(z) and α ∈ C given below, determine the nature of singularity of
f at α: removable, pole or essential. If pole, determine its order.

(a) f(z) =
ez − e−z

z
, α = 0. This is a removable singularity, since by l’hôpital rule:

lim
z→0

ez − e−z

z
= 2 exists.

(b) f(z) =
z − 1

z5(z2 + 9)
, α = 0. This is a pole of order 5, as lim

z→0
z5f(z) = −1

9
6= 0.

(c) f(z) = ez−
1
z , α = 0. This is an essential singularity. The easiest way to prove it is

by exclusion. If f(z) had a removable singularity, or a pole of some order at 0, then we
would be able to write f(z) = z−nφ(z), where n ∈ Z≥0 and φ(z) is holomorphic near

0. But that would mean that e−z
−1

= z−nφ(z)e−z has a pole of order ≤ n at 0. This

contradicts the fact that e−z
−1

has an essential singularity at 0, from its Laurent series

e−z
−1

=
∞∑
k=0

(−1)k
z−k

k!
.
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(d) f(z) =
1

cos(z)
= sec(z). α = π

2
. It is a pole of order 1, since the limit (computed

using l’hôpital rules again) lim
z→π

2

(
z − π

2

)
f(z) = −1 6= 0.

(e) f(z) =
ez

2 − 1

z4
, α = 0. This is a pole of order 2, since lim

z→0
z2f(z) = lim

z→0

ez
2 − 1

z2
=

1 6= 0.

(f) f(z) =
z

cos(z)− 1
, α = 2π. It is a pole of order 2. We can compute the limit:

lim
z→2π

z(z − 2π)2

cos(z)− 1
= −4π 6= 0.

Problem 12. Consider the function f(z) =
1

(z − 1)(z − 2)
. Write its Taylor series

expansion around 0. Write its Laurent series expansion near 1. Write its Taylor series
expansion near ∞.
Solution. The Taylor series near 0 was already computed in Lecture 23, §23.5.
Laurent series near 1 can be obtained as follows:

1

(z − 1)(z − 2)
=

1

z − 1
· −1

1− (z − 1)
=
−1

z − 1

∞∑
k=0

(z − 1)k.

Finally, Taylor series near z = ∞ of f(z) is nothing but Taylor series near w = 0 of
f(w), where w = z−1.

1

(z − 1)(z − 2)
=

w2

(1− w)(1− 2w)
= w2

(
2

1− 2w
− 1

1− w

)
=
∞∑
n=0

(2n+1 − 1)wn+2 .

Hence,
1

(z − 1)(z − 2)
=
∞∑
n=0

(
2n+1 − 1

)
z−n−2 is the Taylor series expansion near ∞.

Problem 13. Prove that 0 is a removable singularity of
z

ez − 1
. Consider its Taylor

series expansion, centered at 0:
z

ez − 1
=
∞∑
n=0

bnz
n.

(1) Compute b0, b1, b2 and b3.

Solution. Since we have z = (ez − 1)
∞∑
n=0

bnz
n, we can write:

z =

(
z +

z2

2!
+
z3

3!
+
z4

4!
+ · · ·

)
·
(
b0 + b1z + b2z

2 + b3z
3 + · · ·

)
.

Comparing coefficients of z on both sides, we get 1 = b0. Comparing coefficients

of z2 on both sides, we get 0 = b1 +
b0
2
⇒ b1 = −1

2
.
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For z3, we obtain 0 =
b0
6

+
b1
2

+ b2 ⇒ b2 =
1

12
. Finally, for z4, we get:

b3 = − b0
24
− b1

6
− b2

2
= − 1

24
+

1

12
− 1

24
= 0.

(2) Prove that the radius of convergence of
∞∑
n=0

bnz
n is 2π.

Solution. Since the singularities of
z

ez − 1
are at {2nπi : n ∈ Z6=0}, the largest

open disc we can have, centered at 0 which avoids this set is D(0; 2π). Hence,
the radius of convergence of the Taylor series is 2π.

(3) Prove that b2k+1 = 0 for every k ≥ 1.

Solution. Let f(z) =
z

ez − 1
. We compute f(z) − f(−z) in two ways. First

via the Taylor series near 0: f(z) − f(−z) = 2
∞∑
k=0

b2k+1z
2k+1. Next, using the

definition,

f(z)− f(−z) =
z

ez − 1
− −z
e−z − 1

=
z

ez − 1
− zez

ez − 1
= −z.

Hence, 2b1 = −1 (which we already knew), and b2k+1 = 0 for every k ≥ 1.

Problem 14. By multiplying the power series and using binomial formula 1, prove
that: ezew = ez+w.

Solution. ezew =

(
∞∑
k=0

zk

k!

)
·

(
∞∑
`=0

w`

`!

)
. Multiplying the two power series, and collect-

ing terms zawb with a+ b = n, we get:

ezew =
∞∑
n=0

(
n∑
k=0

1

k!

1

(n− k)!
zkwn−k

)
=
∞∑
n=0

1

n!

(
n∑
k=0

(
n
k

)
zkwn−k

)

=
∞∑
n=0

(z + w)n

n!
= ez+w.

1Binomial formula: (x+ y)n =

n∑
k=0

(
n
k

)
xn−kyk.


