PROBLEM SHEET 6 - SOLUTIONS

Problem 1. Prove that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges.
Solution 1. Use the integral test: $\sum_{n=2}^{\infty} \frac{1}{n^{2}}<\int_{1}^{\infty} \frac{1}{x^{2}} d x=1$. Hence $\sum_{n=1}^{\infty} \frac{1}{n^{2}}<1+1=2$ converges.
Solution 2. (Cauchy's criterion). Note the following inequalities:

$$
\frac{1}{2^{2}}+\frac{1}{3^{2}}<\frac{2}{2^{2}}=\frac{1}{2}, \quad \frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}<\frac{4}{4^{2}}=\frac{1}{4}
$$

Continuing this way, we have, for every $k \geq 1$:

$$
\frac{1}{\left(2^{k}\right)^{2}}+\frac{1}{\left(2^{k}+1\right)^{2}}+\cdots+\frac{1}{\left(2^{k+1}-1\right)^{2}}<\frac{1}{2^{k}} .
$$

So, for the infinite series:

$$
\frac{1}{\left(2^{k}\right)^{2}}+\frac{1}{\left(2^{k}+1\right)^{2}}+\cdots<\frac{1}{2^{k}}+\frac{1}{2^{k+1}}+\cdots=\frac{1}{2^{k-1}} .
$$

Now, given any $\varepsilon>0$, take $\ell>1$ large enough so that $\frac{1}{2^{\ell-1}}<\varepsilon$. Let $N=2^{\ell}$. Then, for every $n \geq N$ and $p \geq 0$, we have:

$$
\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}+\cdots+\frac{1}{(n+p)^{2}}<\frac{1}{N^{2}}+\frac{1}{(N+1)^{2}}+\cdots<\frac{1}{2^{\ell-1}}<\varepsilon
$$

So, Cauchy's criterion is met, and hence the series is convergent.
Remark. The exact value of this series is $\frac{\pi^{2}}{6}$. It was computed by Euler in 1734, using the infinite product expression of $\sin (z)$, which we will see in Lecture 29.

Problem 2. Find the radius of convergence of the following series.
(a) $\sum_{n=0}^{\infty} 7^{n} z^{n}$. Ratio of successive coefficients is 7 . So radius of convergence is $\frac{1}{7}$.
(b) $\sum_{n=1}^{\infty} n^{n} z^{n}$. Limit of the ratio of successive coefficients:

$$
\lim _{n \rightarrow \infty} \frac{(n+1)^{n+1}}{n^{n}}=\lim _{n \rightarrow \infty}(n+1) \cdot\left(1+\frac{1}{n}\right)^{n}=\infty \cdot e=\infty
$$

So, radius of convergence is 0 .
(c) $\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}$. Again, take the limit: $\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}=1$. So, radius of convergence is 1 .

Problem 3. Let $a, b, c \in \mathbb{C}$ be complex numbers such that $c \notin \mathbb{Z}_{\geq 0}$. The following power series is called hypergeometric series.

$$
F(a, b ; c ; z)=1+\sum_{n=1}^{\infty} \frac{a(a+1) \cdots(a+n-1) b(b+1) \cdots(b+n-1)}{c(c+1) \cdots(c+n-1)} \frac{z^{n}}{n!}
$$

Prove that: (i) If $a, b \in \mathbb{Z}_{\leq 0}$, then the radius of convergence of $F(a, b ; c ; z)$ is ∞. (ii) If $a, b \notin \mathbb{Z}_{\leq 0}$, then its radius of convergence is 1 .
Solution. (i) If either a or b is in $\mathbb{Z}_{\leq 0}$, the series is just a polynomial, hence has ∞ radius of convergence.
(ii) Assuming none of a, b, c are non-positive integers. We apply ratio test again: $\lim _{n \rightarrow \infty} \frac{(a+n)(b+n)}{(c+n)(n+1)}=1$. Hence, radius of convergence is 1 .
Problem 4. Prove that $\ln (1-z)=-\sum_{n=1}^{\infty} \frac{z^{n}}{n}$, for every $z \in D(0 ; 1)$.
Solution. Since $\ln (1-z)$ is an antiderivative of $\frac{-1}{1-z}=-\sum_{k=0}^{\infty} z^{k}$, for $|z|<1$, we get (by taking termwise antiderivative, which does not change the radius of convergence):

$$
\ln (1-z)=C-\sum_{k=0}^{\infty} \frac{z^{k+1}}{k+1}, \text { for }|z|<1
$$

To fix the constant, set $z=0$, to get $C=0$.
Problem 5. For any $\ell \in \mathbb{Z}_{\geq 0}$, prove that:

$$
\frac{1}{(1-z)^{\ell+1}}=\sum_{k=0}^{\infty}\binom{k+\ell}{\ell} z^{k} \text { for every } z \in D(0 ; 1)
$$

Solution. We will prove it by induction on ℓ. The base case is $\ell=0: \frac{1}{1-z}=$ $\sum_{k=0}^{\infty} z^{k}$ for every $z \in D(0 ; 1)$. This was already proved in Lecture 23, (23.2) Example. Now assume that the statement is known to hold for $\ell=n \in \mathbb{Z}_{\geq 0}$:

$$
\frac{1}{(1-z)^{n+1}}=\sum_{k=0}^{\infty}\binom{k+n}{n} z^{k} \text { for every } z \in D(0 ; 1)
$$

Let us try to prove it for $n+1$. Take derivative of this equation to get (for every $z \in \mathbb{C}$ such that $|z|<1$):

$$
\frac{(n+1)}{(1-z)^{n+2}}=\sum_{k=1}^{\infty} k \frac{(n+k)!}{k!n!} z^{k-1} \Rightarrow \frac{1}{(1-z)^{n+2}}=\sum_{k=1}^{\infty} \frac{(n+k)!}{(k-1)!(n+1)!} z^{k-1}
$$

Set $j=k-1$ to get: $\frac{1}{(1-z)^{n+2}}=\sum_{j=0}^{\infty}\binom{n+j+1}{n+1} z^{j}$. The induction step holds, and finishes the proof.

Problem 6. Let $\sum_{k=0}^{\infty} a_{k} z^{k}$ be a power series with radius of convergence $R>0$.
(1) Prove that the radius of convergence of $\sum_{k=0}^{\infty} a_{k} \frac{z^{k+1}}{k+1}$ is $\geq R$.
(2) Prove that the radius of convergence of $\sum_{k=0}^{\infty} a_{k} \frac{z^{k}}{k!}$ is ∞.

Solution 1 (ratio test). If $\frac{1}{R}=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}$, then: $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{n+1} \frac{n}{\left|a_{n}\right|}=\frac{1}{R}$, so, the series $\sum_{k=0}^{\infty} \frac{a_{k}}{k+1} z^{k}$ has radius of convergence R as well.
Similarly, $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{(n+1)!} \frac{n!}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} \frac{1}{n+1}=0$. So, the radius of convergence of $\sum_{k=0}^{\infty} \frac{a_{k}}{k!} z^{k}$ is ∞.
Solution 2. $R>0$ is the radius of convergence of $\sum_{k=0}^{\infty} a_{k} z^{k}$. This means:

- For any $0 \leq r<R$, we can find a constant M such that $\left|a_{n}\right| r^{n}<M$, for every $n \geq 0$.
- If $r>R$, then the sequence of numbers $\left\{\left|a_{n}\right| r^{n}\right\}_{n=0}^{\infty}$ is unbounded.
(1) Consider the series $\sum_{k=0}^{\infty} \frac{a_{k}}{k+1} z^{k}$. For any $0 \leq r<R$, let M be the constant so that $\left|a_{n}\right| r^{n}<M$ for every $n \geq 0$. Then:

$$
\frac{\left|a_{n}\right|}{n+1} r^{n}<\left|a_{n}\right| r^{n}<M
$$

So the radius of convergence of the new series is at least R.
(2) Now consider the series $\sum_{k=0}^{\infty} \frac{a_{k}}{k!} z^{k}$. Fix a positive number $0<\rho<R$, and take M_{1} to be the constant as promised above, for $\rho:\left|a_{n}\right| \rho^{n}<M_{1}$ for every $n \geq 0$.
We want to show that the radius of convergence of the new series is ∞. Meaning, given any $r \in \mathbb{R}_{>0}$, we have to produce a constant M so that $\frac{\left|a_{n}\right|}{n!} r^{n}<M$, for every $n \geq 0$. We have:

$$
\frac{\left|a_{n}\right|}{n!} r^{n}<\frac{M_{1}}{\rho^{n}} \frac{r^{n}}{n!}=M_{1} \frac{t^{n}}{n!}, \text { where } t=\frac{r}{\rho} \in \mathbb{R}_{>0} \text {. }
$$

Since $\frac{t^{n}}{n!} \rightarrow 0$, as $n \rightarrow \infty$, we can find (using the definition of the limit, with $\varepsilon=1$) $N>0$ such that $\frac{t^{n}}{n!}<1$ for every $n \geq N$. This gives us a bound on infinitely many terms: $\frac{\left|a_{n}\right|}{n!} r^{n}<M_{1}$, for every $n \geq N$. Now we just pick the largest number among the left-over finitely many terms:

$$
M>\operatorname{Max}\left\{\left|a_{0}\right|, \frac{\left|a_{1}\right|}{1!} r, \ldots, \frac{\left|a_{N-1}\right|}{(N-1)!} r^{N-1}, M_{1}\right\}
$$

so that $\frac{\left|a_{n}\right|}{n!} r^{n}<M$, for every $n \geq 0$.
Problem 7. Find the mistake in the following calculation.

$$
\frac{1}{1-z}=\sum_{k=0}^{\infty} z^{k} \quad \text { and } \quad \frac{1}{1-z}=-\frac{1}{z} \cdot \frac{1}{1-z^{-1}}=-\sum_{\ell=0}^{\infty} z^{-\ell-1}
$$

Taking the difference we get: $0=\sum_{k=0}^{\infty} z^{k}+\sum_{\ell=0}^{\infty} z^{-\ell-1}$.
Compare coefficient of (say) z to get $0=1$.
Solution. The first identity $\frac{1}{1-z}=\sum_{k=0}^{\infty} z^{k}$ holds for $|z|<1$, while the second $\frac{1}{1-z}=-\sum_{\ell=0}^{\infty} z^{-\ell-1}$ for $|z|>1$. Therefore, we cannot take the difference, since it will yield an identity which holds for no complex number at all!

Problem 8. Let $\sum_{k=0}^{\infty} \frac{2^{k}}{k} z^{-k}$ be a power series centered at ∞. What is its radius of convergence?
Solution. Again, by ratio test, the series converges for $z \in \mathbb{C}$ such that $\left|z^{-1}\right|<\frac{1}{2}$, that is, $|z|>2$. According to the notation of Lecture 23, §23.6: $\{|z|>2\}=D(\infty ; 1 / 2)$, so the radius of convergence is $\frac{1}{2}$.

Problem 9. Compute the Taylor series expansion of $\cos (z)$, around 0 , in the following two ways:
(1) By computing $\frac{d^{n}}{d z^{n}}(\cos (z))$ at $z=0$.

Solution. $f(z)=\cos (z)$ gives $f^{\prime}(z)=-\sin (z), f^{\prime \prime}(z)=-\cos (z)$ and so on. Hence we get $f^{(2 k+1)}(0)=0$ and $f^{(2 k)}(0)=(-1)^{k}$. So, the Taylor series expansion of $\cos (z)$ is: $\sum_{k=0}^{\infty}(-1)^{k} \frac{z^{2 k}}{2 k!}$.
(2) Using $\cos (z)=\frac{e^{\mathbf{i} z}+e^{-\mathbf{i} z}}{2}$ and the Taylor series of e^{z}.

Solution. Taylor series of the exponential function gives us:

$$
\begin{aligned}
& e^{\mathbf{i} z}=1+\mathbf{i} z-\frac{z^{2}}{2!}-\mathbf{i} \frac{z^{3}}{3!}+\cdots \quad \text { and } \quad e^{-\mathbf{i} z}=1-\mathbf{i} z-\frac{z^{2}}{2!}+\mathbf{i} \frac{z^{3}}{3!}+\cdots \\
& \text { Hence, } \cos (z)=\frac{e^{\mathbf{i} z}+e^{-\mathbf{i} z}}{2}=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\cdots
\end{aligned}
$$

Problem 10. Compute the Taylor series expansion, and determine its radius of convergence:
(a) e^{z} centered at 1. $e^{z}=e^{(z-1)+1}=e \cdot \sum_{k=0}^{\infty} \frac{(z-1)^{k}}{k!}$. Radius of convergence $=\infty$, since e^{z} is defined on disc of any radius around 1 .
(b) $\frac{z}{z^{2}+4}$ centered at $0 . \frac{z}{4} \frac{1}{1-\frac{-z^{2}}{4}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{4^{n+1}}$. Radius of convergence is 2 , since the nearest singularity (to 0) of $\frac{z}{z^{2}+4}$ is $\pm 2 \mathbf{i}$, whose distance is 2 (that is, 2 is the largest number r such that $D(0 ; r)$ is still inside the domain of our function).
(c) $\frac{e^{z}}{(1-z)^{2}}$ centered at 0 . (Radius of convergence is going to be 1 , by the same argument as in (b)). Since $e^{z}=\sum_{k=0}^{\infty} \frac{z^{k}}{k!}$ and $\frac{1}{(1-z)^{2}}=\sum_{\ell=0}^{\infty}(\ell+1) z^{\ell}$ (by Problem 5 above), we can just multiply the two power series to get:

$$
\frac{e^{z}}{(1-z)^{2}}=\sum_{n=0}^{\infty}\left(\sum_{\ell=0}^{n} \frac{\ell+1}{(n-\ell)!}\right) z^{n} .
$$

Problem 11. For $f(z)$ and $\alpha \in \mathbb{C}$ given below, determine the nature of singularity of f at α : removable, pole or essential. If pole, determine its order.
(a) $f(z)=\frac{e^{z}-e^{-z}}{z}, \alpha=0$. This is a removable singularity, since by l'hôpital rule: $\lim _{z \rightarrow 0} \frac{e^{z}-e^{-z}}{z}=2$ exists.
(b) $f(z)=\frac{z-1}{z^{5}\left(z^{2}+9\right)}, \alpha=0$. This is a pole of order 5 , as $\lim _{z \rightarrow 0} z^{5} f(z)=-\frac{1}{9} \neq 0$.
(c) $f(z)=e^{z-\frac{1}{z}}, \alpha=0$. This is an essential singularity. The easiest way to prove it is by exclusion. If $f(z)$ had a removable singularity, or a pole of some order at 0 , then we would be able to write $f(z)=z^{-n} \phi(z)$, where $n \in \mathbb{Z}_{\geq 0}$ and $\phi(z)$ is holomorphic near 0 . But that would mean that $e^{-z^{-1}}=z^{-n} \phi(z) e^{-z}$ has a pole of order $\leq n$ at 0 . This contradicts the fact that $e^{-z^{-1}}$ has an essential singularity at 0 , from its Laurent series $e^{-z^{-1}}=\sum_{k=0}^{\infty}(-1)^{k} \frac{z^{-k}}{k!}$.
(d) $f(z)=\frac{1}{\cos (z)}=\sec (z) . \alpha=\frac{\pi}{2}$. It is a pole of order 1 , since the limit (computed using l'hôpital rules again) $\lim _{z \rightarrow \frac{\pi}{2}}\left(z-\frac{\pi}{2}\right) f(z)=-1 \neq 0$.
(e) $f(z)=\frac{e^{z^{2}}-1}{z^{4}}, \alpha=0$. This is a pole of order 2 , since $\lim _{z \rightarrow 0} z^{2} f(z)=\lim _{z \rightarrow 0} \frac{e^{z^{2}}-1}{z^{2}}=$ $1 \neq 0$.
(f) $f(z)=\frac{z}{\cos (z)-1}, \alpha=2 \pi$. It is a pole of order 2 . We can compute the limit: $\lim _{z \rightarrow 2 \pi} \frac{z(z-2 \pi)^{2}}{\cos (z)-1}=-4 \pi \neq 0$.
Problem 12. Consider the function $f(z)=\frac{1}{(z-1)(z-2)}$. Write its Taylor series expansion around 0 . Write its Laurent series expansion near 1. Write its Taylor series expansion near ∞.
Solution. The Taylor series near 0 was already computed in Lecture 23, §23.5.
Laurent series near 1 can be obtained as follows:

$$
\frac{1}{(z-1)(z-2)}=\frac{1}{z-1} \cdot \frac{-1}{1-(z-1)}=\frac{-1}{z-1} \sum_{k=0}^{\infty}(z-1)^{k} .
$$

Finally, Taylor series near $z=\infty$ of $f(z)$ is nothing but Taylor series near $w=0$ of $f(w)$, where $w=z^{-1}$.

$$
\frac{1}{(z-1)(z-2)}=\frac{w^{2}}{(1-w)(1-2 w)}=w^{2}\left(\frac{2}{1-2 w}-\frac{1}{1-w}\right)=\sum_{n=0}^{\infty}\left(2^{n+1}-1\right) w^{n+2}
$$

Hence, $\frac{1}{(z-1)(z-2)}=\sum_{n=0}^{\infty}\left(2^{n+1}-1\right) z^{-n-2}$ is the Taylor series expansion near ∞.
Problem 13. Prove that 0 is a removable singularity of $\frac{z}{e^{z}-1}$. Consider its Taylor series expansion, centered at $0: \frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} b_{n} z^{n}$.
(1) Compute b_{0}, b_{1}, b_{2} and b_{3}.

Solution. Since we have $z=\left(e^{z}-1\right) \sum_{n=0}^{\infty} b_{n} z^{n}$, we can write:

$$
z=\left(z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\frac{z^{4}}{4!}+\cdots\right) \cdot\left(b_{0}+b_{1} z+b_{2} z^{2}+b_{3} z^{3}+\cdots\right) .
$$

Comparing coefficients of z on both sides, we get $1=b_{0}$. Comparing coefficients of z^{2} on both sides, we get $0=b_{1}+\frac{b_{0}}{2} \Rightarrow b_{1}=-\frac{1}{2}$.

For z^{3}, we obtain $0=\frac{b_{0}}{6}+\frac{b_{1}}{2}+b_{2} \Rightarrow b_{2}=\frac{1}{12}$. Finally, for z^{4}, we get:

$$
b_{3}=-\frac{b_{0}}{24}-\frac{b_{1}}{6}-\frac{b_{2}}{2}=-\frac{1}{24}+\frac{1}{12}-\frac{1}{24}=0
$$

(2) Prove that the radius of convergence of $\sum_{n=0}^{\infty} b_{n} z^{n}$ is 2π.

Solution. Since the singularities of $\frac{z}{e^{z}-1}$ are at $\left\{2 n \pi \mathbf{i}: n \in \mathbb{Z}_{\neq 0}\right\}$, the largest open disc we can have, centered at 0 which avoids this set is $D(0 ; 2 \pi)$. Hence, the radius of convergence of the Taylor series is 2π.
(3) Prove that $b_{2 k+1}=0$ for every $k \geq 1$.

Solution. Let $f(z)=\frac{z}{e^{z}-1}$. We compute $f(z)-f(-z)$ in two ways. First via the Taylor series near $0: f(z)-f(-z)=2 \sum_{k=0}^{\infty} b_{2 k+1} z^{2 k+1}$. Next, using the definition,

$$
f(z)-f(-z)=\frac{z}{e^{z}-1}-\frac{-z}{e^{-z}-1}=\frac{z}{e^{z}-1}-\frac{z e^{z}}{e^{z}-1}=-z
$$

Hence, $2 b_{1}=-1$ (which we already knew), and $b_{2 k+1}=0$ for every $k \geq 1$.
Problem 14. By multiplying the power series and using binomial formula ${ }^{1}$, prove that: $e^{z} e^{w}=e^{z+w}$.
Solution. $e^{z} e^{w}=\left(\sum_{k=0}^{\infty} \frac{z^{k}}{k!}\right) \cdot\left(\sum_{\ell=0}^{\infty} \frac{w^{\ell}}{\ell!}\right)$. Multiplying the two power series, and collecting terms $z^{a} w^{b}$ with $a+b=n$, we get:

$$
\begin{gathered}
e^{z} e^{w}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{k!} \frac{1}{(n-k)!} z^{k} w^{n-k}\right)=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\sum_{k=0}^{n}\binom{n}{k} z^{k} w^{n-k}\right) \\
=\sum_{n=0}^{\infty} \frac{(z+w)^{n}}{n!}=e^{z+w}
\end{gathered}
$$

[^0]
[^0]: ${ }^{1}$ Binomial formula: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}$.

