COMPLEX ANALYSIS: PROBLEM SHEET 6

Problem 1. Prove that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.

Problem 2. Find the radius of convergence of the following series.

(a)
$$\sum_{n=0}^{\infty} 7^n z^n$$
, (b) $\sum_{n=1}^{\infty} n^n z^n$, (c) $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$.

(For computing radius of convergence, read Lecture 22, §22.4 - ratio test.)

Problem 3. Let $a, b, c \in \mathbb{C}$ be complex numbers such that $c \notin \mathbb{Z}_{\geq 0}$. The following power series is called *hypergeometric series*.¹.

$$F(a,b;c;z) = 1 + \sum_{n=1}^{\infty} \frac{a(a+1)\cdots(a+n-1)b(b+1)\cdots(b+n-1)}{c(c+1)\cdots(c+n-1)} \frac{z^n}{n!}.$$

Prove that: (i) If $a, b \in \mathbb{Z}_{\leq 0}$, then the radius of convergence of F(a, b; c; z) is ∞ . (ii) If $a, b \notin \mathbb{Z}_{\leq 0}$, then its radius of convergence is 1.

Problem 4. $f(z) = \ln(1-z)$ is an antiderivative of $\frac{-1}{1-z}$, with f(0) = 0. Use this fact, and the power series expansion (geometric series) $\frac{1}{1-z} = \sum_{k=0}^{\infty} z^k$ in the open disc D(0; 1) to prove that

$$\ln(1-z) = -\sum_{n=1}^{\infty} \frac{z^n}{n}, \text{ for every } z \in D(0;1).$$

Problem 5. For any $\ell \in \mathbb{Z}_{\geq 0}$, prove that:

$$\frac{1}{(1-z)^{\ell+1}} = \sum_{k=0}^{\infty} \begin{pmatrix} k+\ell\\ \ell \end{pmatrix} z^k \text{ for every } z \in D(0;1).$$

Recall $\binom{m}{n} = \frac{m!}{n!(m-n)!}$. (Hint: start from $\ell = 0$ and take derivatives (power series can be term-wise differentiated - Lecture 23, page 3).)

Problem 6. Let $\sum_{k=0}^{\infty} a_k z^k$ be a power series with radius of convergence R > 0.

¹Carl Friedrich Gauss (1777-1855) studied this series in 1813. It was introduced by John Wallis (1616-1703) in his 1655 book *Arithmetica Infinitorum* who also coined the term hypergeometric. When a = 1 and b = c, F(1, c; c; z) becomes the geometric series.

(1) Prove that the radius of convergence of $\sum_{k=0}^{\infty} a_k \frac{z^{k+1}}{k+1}$ is $\geq R$. (2) Prove that the radius of convergence of $\sum_{k=0}^{\infty} a_k \frac{z^k}{k!}$ is ∞ .

Problem 7. Find the mistake in the following calculation.

$$\frac{1}{1-z} = \sum_{k=0}^{\infty} z^k \quad \text{and} \quad \frac{1}{1-z} = -\frac{1}{z} \cdot \frac{1}{1-z^{-1}} = -\sum_{\ell=0}^{\infty} z^{-\ell-1}.$$

Taking the difference we get:

$$0 = \sum_{k=0}^{\infty} z^k + \sum_{\ell=0}^{\infty} z^{-\ell-1}.$$

Compare coefficient of (say) z to get 0 = 1.

Problem 8. Let $\sum_{k=0}^{\infty} \frac{2^k}{k} z^{-k}$ be a power series centered at ∞ . What is its radius of convergence? (see Lecture 23, $\S23.6$).

Problem 9. Compute the Taylor series expansion of $\cos(z)$, around 0, in the following two ways:

(1) By computing $\frac{d^n}{dz^n}(\cos(z))$ at z = 0. (2) Using $\cos(z) = \frac{e^{\mathbf{i}z} + e^{-\mathbf{i}z}}{2}$ and the Taylor series of e^z .

Problem 10. Compute the Taylor series expansion, and determine its radius of convergence:

(a)
$$e^z$$
 centered at 1, (b) $\frac{z}{z^2+4}$ centered at 0, (c) $\frac{e^z}{(1-z)^2}$ centered at 0.

Problem 11. For f(z) and $\alpha \in \mathbb{C}$ given below, determine the nature of singularity of f at α : removable, pole or essential (see Lecture 24, §24.5, 24.6). If pole, determine its order.

(a)
$$f(z) = \frac{e^z - e^{-z}}{z}, \ \alpha = 0$$
, (b) $f(z) = \frac{z - 1}{z^5(z^2 + 9)}, \ \alpha = 0$,
(c) $f(z) = e^{z - \frac{1}{z}}, \ \alpha = 0$, (d) $f(z) = \frac{1}{\cos(z)} = \sec(z). \ \alpha = \frac{\pi}{2},$
(e) $f(z) = \frac{e^{z^2} - 1}{z^4}, \ \alpha = 0$, (f) $f(z) = \frac{z}{\cos(z) - 1}, \ \alpha = 2\pi.$

Problem 12. Consider the function $f(z) = \frac{1}{(z-1)(z-2)}$. Write its Taylor series expansion around 0. Write its Laurent series expansion near 1. Write its Taylor series expansion near ∞ .

Problem 13. Prove that 0 is a removable singularity of $\frac{z}{e^z - 1}$. Consider its Taylor series expansion, centered at 0:

$$\frac{z}{e^z - 1} = \sum_{n=0}^{\infty} b_n z^n \; .$$

- (1) Compute b_0, b_1, b_2 and b_3 .
- (2) Prove that the radius of convergence of $\sum_{n=0}^{\infty} b_n z^n$ is 2π .
- (3) Prove that $b_{2k+1} = 0$ for every $k \ge 1$. (*Hint: if* $f(z) = \frac{z}{e^z - 1}$, what is f(z) - f(-z)?)

Problem 14. By multiplying the power series and using binomial formula ², prove that: $e^{z}e^{w} = e^{z+w}$.