## COMPLEX ANALYSIS: PROBLEM SHEET 6

Problem 1. Prove that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges.
Problem 2. Find the radius of convergence of the following series.
(a) $\sum_{n=0}^{\infty} 7^{n} z^{n}$,
(b) $\sum_{n=1}^{\infty} n^{n} z^{n}$,
(c) $\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}$.
(For computing radius of convergence, read Lecture 22, §22.4-ratio test.)
Problem 3. Let $a, b, c \in \mathbb{C}$ be complex numbers such that $c \notin \mathbb{Z}_{\geq 0}$. The following power series is called hypergeometric series. ${ }^{1}$.

$$
F(a, b ; c ; z)=1+\sum_{n=1}^{\infty} \frac{a(a+1) \cdots(a+n-1) b(b+1) \cdots(b+n-1)}{c(c+1) \cdots(c+n-1)} \frac{z^{n}}{n!}
$$

Prove that: (i) If $a, b \in \mathbb{Z}_{\leq 0}$, then the radius of convergence of $F(a, b ; c ; z)$ is $\infty$. (ii) If $a, b \notin \mathbb{Z}_{\leq 0}$, then its radius of convergence is 1 .
Problem 4. $f(z)=\ln (1-z)$ is an antiderivative of $\frac{-1}{1-z}$, with $f(0)=0$. Use this fact, and the power series expansion (geometric series) $\frac{1}{1-z}=\sum_{k=0}^{\infty} z^{k}$ in the open disc $D(0 ; 1)$ to prove that

$$
\ln (1-z)=-\sum_{n=1}^{\infty} \frac{z^{n}}{n}, \text { for every } z \in D(0 ; 1)
$$

Problem 5. For any $\ell \in \mathbb{Z}_{\geq 0}$, prove that:

$$
\frac{1}{(1-z)^{\ell+1}}=\sum_{k=0}^{\infty}\binom{k+\ell}{\ell} z^{k} \text { for every } z \in D(0 ; 1)
$$

Recall $\binom{m}{n}=\frac{m!}{n!(m-n)!}$. (Hint: start from $\ell=0$ and take derivatives (power series can be term-wise differentiated - Lecture 23, page 3).)

Problem 6. Let $\sum_{k=0}^{\infty} a_{k} z^{k}$ be a power series with radius of convergence $R>0$.

[^0](1) Prove that the radius of convergence of $\sum_{k=0}^{\infty} a_{k} \frac{z^{k+1}}{k+1}$ is $\geq R$.
(2) Prove that the radius of convergence of $\sum_{k=0}^{\infty} a_{k} \frac{z^{k}}{k!}$ is $\infty$.

Problem 7. Find the mistake in the following calculation.

$$
\frac{1}{1-z}=\sum_{k=0}^{\infty} z^{k} \quad \text { and } \quad \frac{1}{1-z}=-\frac{1}{z} \cdot \frac{1}{1-z^{-1}}=-\sum_{\ell=0}^{\infty} z^{-\ell-1}
$$

Taking the difference we get:

$$
0=\sum_{k=0}^{\infty} z^{k}+\sum_{\ell=0}^{\infty} z^{-\ell-1}
$$

Compare coefficient of (say) $z$ to get $0=1$.
Problem 8. Let $\sum_{k=0}^{\infty} \frac{2^{k}}{k} z^{-k}$ be a power series centered at $\infty$. What is its radius of convergence? (see Lecture 23, §23.6).

Problem 9. Compute the Taylor series expansion of $\cos (z)$, around 0 , in the following two ways:
(1) By computing $\frac{d^{n}}{d z^{n}}(\cos (z))$ at $z=0$.
(2) Using $\cos (z)=\frac{e^{\mathbf{i} z}+e^{-\mathbf{i} z}}{2}$ and the Taylor series of $e^{z}$.

Problem 10. Compute the Taylor series expansion, and determine its radius of convergence:
(a) $e^{z}$ centered at 1
(b) $\frac{z}{z^{2}+4}$ centered at 0 ,
(c) $\frac{e^{z}}{(1-z)^{2}}$ centered at 0 .

Problem 11. For $f(z)$ and $\alpha \in \mathbb{C}$ given below, determine the nature of singularity of $f$ at $\alpha$ : removable, pole or essential (see Lecture 24, $\S 24.5,24.6$ ). If pole, determine its order.
(a) $f(z)=\frac{e^{z}-e^{-z}}{z}, \alpha=0$,
(b) $f(z)=\frac{z-1}{z^{5}\left(z^{2}+9\right)}, \alpha=0$,
(c) $f(z)=e^{z-\frac{1}{z}}, \alpha=0$,
(d) $f(z)=\frac{1}{\cos (z)}=\sec (z) \cdot \alpha=\frac{\pi}{2}$,
(e) $f(z)=\frac{e^{z^{2}}-1}{z^{4}}, \alpha=0$,
(f) $f(z)=\frac{z}{\cos (z)-1}, \alpha=2 \pi$.

Problem 12. Consider the function $f(z)=\frac{1}{(z-1)(z-2)}$. Write its Taylor series expansion around 0 . Write its Laurent series expansion near 1. Write its Taylor series expansion near $\infty$.

Problem 13. Prove that 0 is a removable singularity of $\frac{z}{e^{z}-1}$. Consider its Taylor series expansion, centered at 0 :

$$
\frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} b_{n} z^{n}
$$

(1) Compute $b_{0}, b_{1}, b_{2}$ and $b_{3}$.
(2) Prove that the radius of convergence of $\sum_{n=0}^{\infty} b_{n} z^{n}$ is $2 \pi$.
(3) Prove that $b_{2 k+1}=0$ for every $k \geq 1$.
(Hint: if $f(z)=\frac{z}{e^{z}-1}$, what is $f(z)-f(-z)$ ?)
Problem 14. By multiplying the power series and using binomial formula ${ }^{2}$, prove that: $e^{z} e^{w}=e^{z+w}$.
${ }^{2}$ Binomial formula: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}$.


[^0]:    ${ }^{1}$ Carl Friedrich Gauss (1777-1855) studied this series in 1813. It was introduced by John Wallis (1616-1703) in his 1655 book Arithmetica Infinitorum who also coined the term hypergeometric. When $a=1$ and $b=c, F(1, c ; c ; z)$ becomes the geometric series.

