
PROBLEM SHEET 7: SOLUTIONS

Problem 1. Compute the following residues.

(a) Res
z=2πi

(
1

z(1− e−z)

)
.

Solution. Change of variables z = x+ 2πi changes it to (since e−x−2πi = e−x):

Res
x=0

(
1

(x+ 2πi)(1− e−x)

)
= Res

x=0

(
1

x

1

x+ 2πi
· x

1− e−x

)

The term in the box is defined at x = 0. So the pole at x = 0 is of order 1 and

residue there is the value of the function in the box, at x = 0, namely:
1

2πi
(since

lim
x→0

x

1− e−x
= 1.)

(b) Res
z=3π

(cot(z)).

Solution. Change of variables z = x + 3πi changes it to (cos(x + 3π) = − cos(x) and
sin(x+ 3π) = − sin(x), so cot(x+ 3π) = cot(x)):

Res
x=0

(
cos(x)

sin(x)

)
= Res

x=0

(
1

x
cos(x) · x

sin(x)

)

So, the pole is of order 1, and residue there is the value of the function in the box at

x = 0, namely 1, since cos(0) = 1 and lim
x→0

x

sin(x)
= 1.

(c) Res
z=0

(
1

z2 sin(z)

)
.

Solution. Multiply and divide the function by z to write:

Res
z=0

(
1

z2 sin(z)

)
= Res

z=0

(
1

z3
z

sin(z)

)

So, the pole at z = 0 is of order 3 and residue there is computed by either
1

2

[
d2

dz2
z

sin z

]
z=0

,

or by computing the coefficient of z2 in
z

sin(z)
. I prefer the latter, and the computation

is:

z

sin(z)
= a0 + a1z + a2z

2 + · · · ⇒ z =

(
z − z3

6
+ · · ·

)(
a0 + a1z + a2z

2 + · · ·
)

1
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Comparing coefficients of z gives 1 = a0; of z2 gives 0 = a1; of z3 gives 0 = a2−
a0
6
⇒

a2 =
1

6
. Hence Res

z=0

(
1

z2 sin(z)

)
=

1

6
.

(d) Res
z=nπ

(
1

z2 sin(z)

)
, (n ∈ Z6=0).

Solution. Change variables z = x + nπ and use sin(x + nπ) = (−1)n to rewrite the
problem as:

Res
x=0

(
(−1)n

(x+ nπ)2 sin(x)

)
= Res

x=0

(
1

x

(−1)n

(x+ nπ)2
· x

sin(x)

)

Again, using lim
x→0

x

sin(x)
= 1, the value of the function in the box, at x = 0 is

(−1)n

n2π2
.

(e) Res
z=0

(
z − sin(z)

z

)
.

Solution. Since z − sin(z) =
z3

6
− · · · , dividing it by z still gives a function defined at

0. Hence the residue is 0.

(f) Res
z=0

(
ez − e−z

z4(1− z2)

)
.

Solution. The answer is the coefficient of z3 in
ez − e−z

1− z2
, which we can compute as

follows:

ez − e−z

1− z2
= (ez − e−z) 1

1− z2
= 2

(
z +

z3

3!
+ · · ·

)(
1 + z2 + z4 + · · ·

)
So, the coefficient of z3 is 2

(
1 +

1

6

)
=

7

3
.

(g) Res
z=0

(
ln(1 + z) sin(z)

z5

)
.

Solution. Again, the answer is the coefficient of z4 in ln(1+z) sin(z) which we compute
as follows:

ln(1 + z) sin(z) =

(
z − z2

2
+
z3

3
− z4

4
+ · · ·

)(
z − z3

6
+
z5

5!
− · · ·

)
Coefficient of z4 = −1

6
+

1

3
=

1

6
.

Problem 2. Prove that Res
z=∞

(
2z3 + 7

z(z − 1)3

)
= −2.

Solution. (see Lecture 26, §26.2) Use Res
z=∞

(f(z)) = −Res
w=0

(
w−2f(w)

)
where w = z−1.

Res
z=∞

(
2z3 + 7

z(z − 1)3

)
= −Res

w=0

(
1

w2
· 2 + 7w3

w3
· w4

(1− w)3

)
= −Res

w=0

(
1

w

2 + 7w3

(1− w)3

)
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which is equal to (−1) times the value of the function in the box at w = 0, that is −2.

Problem 3. Let C be the counterclockwise circle of radius 3, centered at 0. Compute

the following integral, using the change of variables w = z−1:

∫
C

z3e
1
z

1 + z3
dz.

Solution. Change of variables w = z−1 changes C into a clockwise circle (denoted by
−C ′), centered at 0, of radius 1/3; dz into −w−2dw. Hence:∫

C

z3e
1
z

1 + z3
dz =

∫
−C′

w−3ew

1 + w−3
(−w−2dw) =

∫
C′

ew

w3 + 1

dw

w2

By Cauchy’s integral formula, this integral is given by: 2πi

[
d

dw

ew

w3 + 1

]
w=0

, which is

equal to 2πi

[
(w3 + 1)ew − ew · 3w2

(w3 + 1)2

]
w=0

= 2πi.

Problem 4. Let n < m be two positive integers. Let P (z) = anz
n+an−1z

n−1+ · · ·+a0
and Q(z) = bmz

m+ · · ·+ b0 be two polynomials of degrees n and m respectively. Prove

that Res
z=∞

(
P (z)

Q(z)

)
=

{
0 if n < m− 1
− an
bm

if n = m− 1
.

Solution. I am again going to use Res
z=∞

(f(z)) = −Res
w=0

(
w−2f(w)

)
where w = z−1.

Res
z=∞

(
P (z)

Q(z)

)
= −Res

w=0

(
w−2

P (w−1)

Q(w−1)

)

= −Res
w=0

(
wm

wn+2

an + an−1w + · · ·+ a0w
n

bm + bm−1w + · · ·+ b0wm

)
Now m ≥ n + 1 is given. If m ≥ n + 2, the function written above is holomorphic at
w = 0, so its residue at w = 0 is 0. If m = n+ 1, then the residue is simply (−1) times

the value of the fraction in the box at w = 0 equal to −an
bm

.

Problem 5. Let Ω ⊂ C be an open set and f : Ω → C be a holomorphic function.

Assume that z0 ∈ Ω is a zero of f of order N ∈ Z≥1. Prove that Res
z=z0

(
f ′(z)

f(z)

)
= N .

Solution. f vanishes at z0 to order N means f(z) = (z − z0)
Ng(z), and g does not

vanish at all in a small enough disc around z0. This allows us to compute:

f ′(z)

f(z)
=
N(z − z0)N−1g(z) + (z − z0)Ng′(z)

(z − z0)Ng(z)
=

N

z − z0
+
g′(z)

g(z)
.

Now
g′(z)

g(z)
is holomorphic near z0, hence has residue 0 at z0. So,

Res
z=z0

(
f ′(z)

f(z)

)
= Res

z=z0

(
N

z − z0

)
= N.
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Problem 6. Let Ω ⊂ C be an open set, α ∈ Ω, and f : Ω\{α} → C be a holomorphic

function, such that α is a pole of f , of order M ∈ Z≥1. Prove that Res
z=α

(
f ′(z)

f(z)

)
= −M .

Solution. Same as Problem 5, just change N to −M .

Problem 7. Compute the following integrals:

(a)

∫ 2π

0

dθ

5 + 4 sin(θ)
.

Solution. Write z = eiθ so that sin(θ) =
z − z−1

2i
and dθ =

dz

iz
. Let C be the

counterclockwise circle around 0 of radius 1. Then the integral we have to compute is:∫
C

1

5 + 4
(
z−z−1

2i

) dz
iz

=

∫
C

dz

2z2 + 5iz − 2
.

Now the quadratic equation 2z2 + 5iz − 2 = 0 has two solutions: α1 = − i

2
and

α2 = −2i. α1 is within C and α2 is outside. So, we can compute the integral using
Cauchy’s formula:∫

C

dz

2z2 + 5iz − 2
=

∫
C

dz

2(z + 2i)
(
z + i

2

) = 2πi
1

2
(
2i− i

2

)
which gives the answer:

2π

3
.

(b)

∫ 2π

0

dθ

(a+ cos(θ))2
, (a ∈ R>1).

Solution. Again, change of variables z = eiθ turns the integral in question to:∫
C

1(
a+ z+z−1

2

)2 dziz =
4

i

∫
C

z

(z2 + 2az + 1)2
dz.

z2 + 2az + 1 = 0 has two solutions: α1 = −a +
√
a2 − 1 and α2 = −a −

√
a2 − 1. As

a > 1, |α2| = a +
√
a2 − 1 > 1, hence α2 is outside of C. As α1α2 = 1, α1 must be

inside C.

4

i

∫
C

z

(z2 + 2az + 1)2
dz =

4

i

∫
C

z

(z − α1)2(z − α2)2
dz =

4

i
2πi

[
d

dz

(
z

(z − α2)2

)]
z=α1

= 8π

[
1

(z − α2)2
− 2z

(z − α2)3

]
z=α1

= 8π
−(α1 + α2)

(α1 − α2)3

= 8π
2a

(2
√
a2 − 1)3

=
2πa

(a2 − 1)
3
2

.
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(c)

∫ 2π

0

dθ

1 + sin2(θ)
.

Solution. z = eiθ changes the problem to:∫
C

1

1 +
(
z−z−1

2i

)2 dz

iz
= −4

i

∫
C

z

z4 − 6z2 + 1
dz.

Now, z4 − 6z2 + 1 = 0 is a quadratic equation in z2, which gives us two solutions
z2 = r1, r2, where:

r1 = 3 + 2
√

2 and r2 = 3− 2
√

2.

r1 is clearly outside of C; and because of r1r2 = 1, we must have r1 inside C. Thus,
z4 − 6z2 + 1 = (z2 − r1)(z2 − r2) = (z2 − r1)(z −

√
r2)(z +

√
r2). Our integral can now

again be computed using Cauchy’s formula:

−4

i

∫
C

z

z4 − 6z2 + 1
dz = −4

i

∫
C

z

(z2 − r1)(z −
√
r2)(z +

√
r2)

dz

= −4

i
2πi

( √
r2

(r2 − r1)2
√
r1

+
−√r2

(r2 − r1)(−2
√
r2)

)
=

8π

r1 − r2
=

8π

4
√

2
=
√

2π.

(d)

∫ 2π

0

cos(2θ) dθ

1− 2p cos(θ) + p2
, (0 < p < 1).

Solution. Perform the change of variables z = eiθ again to convert the integral in
question to: ∫

C

z+z−1

2

1− 2p
(
z+z−1

2

)
+ p2

dz

iz
=

1

2i

∫
C

z4 + 1

z2(z − pz2 − p+ p2z)
dz.

Using the factorization: z − pz2− p+ p2z = (z − p)(1− pz), we see that the integrand
has 2 singularities inside C: at z = 0 and z = p (since 0 < p < 1). Let C1 be a small
(counterclockwise) circle around p and C2 around 0.

1

2i

∫
C

z4 + 1

z2(z − p)(1− pz)
dz =

1

2i

∫
C1

z4 + 1

z2(z − p)(1− pz)
dz +

1

2i

∫
C2

z4 + 1

z2(z − p)(1− pz)
dz

Now,
1

2i

∫
C1

z4 + 1

z2(z − p)(1− pz)
dz =

2πi

2i
· p4 + 1

p2(1− p2)
= π

p4 + 1

p2(1− p2)
.

1

2i

∫
C2

z4 + 1

z2(z − p)(1− pz)
dz =

2πi

2i
·
[
d

dz

(
z4 + 1

(z − p)(1− pz)

)]
z=0

= π

[
4z3

(z − p)(1− pz)
− z4 + 1

(z − p)2(1− pz)
+

p(z4 + 1)

(z − p)(1− pz)2

]
z=0

= −π1 + p2

p2
.
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Combining, we get:

1

2i

∫
C

z4 + 1

z2(z − p)(1− pz)
dz = π

(
1 + p4

p2(1− p2)
− 1 + p2

p2

)

= π
1 + p4 − (1− p2)(1 + p2)

p2(1− p2)
= π

1 + p4 − (1− p4)
p2(1− p2)

=
2πp2

1− p2
.

Problem 8. For n ∈ Z≥0, prove that

∫ π

0

sin2n(θ) dθ =
(2n)!

22n(n!)2
π.

Solution. Let us compute

∫ 2π

0

sin2n(θ) dθ first (we will divide it by 2 in the end). Again

we do the change of variables z = eiθ. Our function is going to become:

sin2n(θ) =

(
z − z−1

2i

)2n

=
(−1)n

22n
(z − z−1)2n

And the integral we are trying to compute is:∫ 2π

0

sin2n(θ) dθ =

∫
C

(−1)n

22n
(z − z−1)2n dz

iz
=

(−1)n

22ni

∫
C

(z − z−1)2ndz
z
.

We can expand (z − z−1)2n using the binomial formula:

(z − z−1)2n =
2n∑
k=0

(−1)k
(

2n
k

)
z2n−k(z−1)k =

2n∑
k=0

(−1)k
(

2n
k

)
z2n−2k

Therefore our integral becomes:

(−1)n

22ni

∫
C

(z − z−1)2ndz
z

=
(−1)n

22ni
·

(
2n∑
k=0

(−1)k
(

2n
k

)∫
C

z2n−2k−1 dz

)
Using the fact that

∫
C
z` dz is 2πi for ` = −1 and 0 otherwise, we see that the only term

in the sum that gives a non–zero integral is when k = n. So, our integral simplifies to:∫ 2π

0

sin2n(θ) dθ =
(−1)n

22ni
2πi(−1)n

(
2n
n

)
=

2π

22n

(2n)!

(n!)2
.

Hence,

∫ π

0

sin2n(θ) dθ =
π

22n

(2n)!

(n!)2
.

Problem 9. Compute the following integrals.

(a)

∫ ∞
−∞

dx

x4 + 1
.

Solution. We are going to integrate
1

z4 + 1
along CR. See the figure below.
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Figure 1. Contour CR consisting of two smooth pieces.

Step 1. Let us estimate the function
1

z4 + 1
as z lies on γR. By triangle inequality

|z4 + 1| ≥ |z4| − 1 = R4 − 1, so by our important inequality:∣∣∣∣∫
γR

dz

z4 + 1

∣∣∣∣ ≤ 1

R4 − 1
· πR→ 0 as R→∞.

Step 2.

∫
CR

1

z4 + 1
dz. (This computation is very similar to the one given in Lecture

27, §27.5). The solutions of z4 = −1 are the following (see Figure above).

α1 = e
π
4
i, α2 = e

3π
4
i

β2 = e
5π
4
i, β1 = e

7π
4
i

So,

∫
CR

1

z4 + 1
dz = 2πi

(
Res
z=α1

(
1

z4 + 1

)
+ Res

z=α2

(
1

z4 + 1

))
.

Res
z=α1

(
1

z4 + 1

)
= lim

z→α1

z − α1

z4 + 1
= lim

z→α1

1

4z3
=

1

4α3
1

=
α1

4α4
1

= −α1

4

Now, α1 + α2 = eiπ/4 + ei3π/4 = eiπ/4 − e−iπ/4 = 2i sin(π/4) =
√

2i.

Thus, the sum of the residues is:∫
CR

1

z4 + 1
dz = −2πi

α1 + α2

4
= −2πi

√
2i

4
=

π√
2
.

Final step. The integral in question

∫ ∞
−∞

dx

x4 + 1
is the limit

lim
R→∞

(∫
CR

1

z4 + 1
dz −

∫
γR

1

z4 + 1
dz

)
.

The latter being zero, we get that the answer is
π√
2

.
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(b)

∫ ∞
−∞

x2

(x2 + 9)(x2 + 4)2
dx.

Solution. We again are going to compute the integral over CR (contour from the pre-
vious problem). The singularities of the integrand are ±2i and ±3i, of which 2i, 3i are
within CR and the other two are outside.

Step 1. Figure out the bound of the integrand as z lies on γR:∣∣∣∣∫
γR

z2

(z2 + 9)(z2 + 4)2
dz

∣∣∣∣ ≤ R2

(R2 − 9)(R2 − 4)2
· πR→ 0 as R→∞.

Step 2. Compute the integral over CR:∫
CR

z2

(z2 + 9)(z2 + 4)2
dz =

∫
CR

z2

(z + 3i)(z + 2i)2
dz

(z − 3i)(z − 2i)2

2πi

([
z2

(z + 3i)(z2 + 4)2

]
z=3i

+

[
d

dz

(
z2

(z2 + 9)(z + 2i)2

)]
z=2i

)
= 2πi

(
(3i)2

(−9 + 4)2(6i)
+

[
2z

(z2 + 9)(z + 2i)2
− z2.2z

(z2 + 9)2(z + 2i)2
− 2z2

(z2 + 9)(z + 2i)3

]
z=2i

)
= 2πi

(
−9

25(6i)
+

4i

5(4i)2
− (2i)24i

(25)(4i)2
− 2(2i)2

5(4i)3

)
= 2π

(
−3

50
+

1

20
+

1

25
− 1

40

)
=

π

100
.

Final step. Put everything together to get:∫ ∞
−∞

x2

(x2 + 9)(x2 + 4)2
dx =

π

100
.

Problem 10. Let a, b ∈ R>0 be two positive real numbers. Prove that:∫ ∞
0

x4

(a+ bx2)4
dx =

π

32a
3
2 b

5
2

.

Solution. Let us write t = a/b so that the integrand has singularities at ±ti. Again, we

are going to integrate
z4

(a+ bz2)4
over the contour CR from the figure above (we will

have to divide the answer by 2 at the end, since the problem is only asking for

∫ ∞
0

.)

Step 1. This is pretty much the same as the ones given before. We estimate the
integral: ∣∣∣∣∫

γR

z4

b4(z2 + t)4
dz

∣∣∣∣ ≤ R4

b4(R2 − t)4
· πR→ 0 as R→∞.

Step 2. This is going to be a lengthy computation.

1

b4

∫
CR

z4

(z + ti)4(z − ti)4
dz =

2πi

b4
·X ,
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where X can be computed either as
1

6

[
d3

dz3

(
z4

(z + ti)4

)]
z=ti

, or as the coefficient of

(z − ti)3 in the Taylor series expansion of
z4

(z + ti)4
near z = ti. I like the second way

(after computing first derivative it becomes clear that the calculation is only going to
get messy).

So, a little change of variable z = w + ti turns our problem to:

X = Coefficient of w3 in the Taylor series of

(
w + ti

w + 2ti

)4

near w = 0.

(
w + ti

w + 2ti

)4

= (w + ti)4 · 1

(2ti)4
· 1(

1 + w
2ti

)4
=

1

(2ti)4
(w4+4w3(ti)+6w2(ti)2+4w(ti)3+(ti)4)

(
1− 4

w

2ti
+ 10

w2

(2ti)2
− 20

w3

(2ti)3
+ · · ·

)
(here I opened the first term using binomial formula, and the second using

1

(1− z)`+1
=

∞∑
n=0

(
n+ `
`

)
zn.)

So, the coefficient of w3 in this product is:

X =
1

16t4
(ti)

(
4− 12 + 10− 5

2

)
=

i

16t3

(
−1

2

)
.

Hence, we get:

1

b4

∫
CR

z4

(z + ti)4(z − ti)4
dz =

2πi

b4
i

16t3

(
−1

2

)
=

π

16t3b4
=

π

16a
3
2 b4−

3
2

.

(since t = ab−1.)

Final step. Gathering the results from the previous two steps, and dividing by 2, we
get: ∫ ∞

0

x4

(a+ bx2)4
dx =

π

32a
3
2 b

5
2

.

Problem 11. (Bonus) Let n ∈ Z≥0. Prove that∫ 2π

0

ecos(θ) cos(nθ − sin(θ)) dθ =
2π

n!
and

∫ 2π

0

ecos(θ) sin(nθ − sin(θ)) dθ = 0.

Solution. We are going to combine the two integrals as real and imaginary parts of
one:

cos(nθ − sin(θ)) + i sin(nθ − sin(θ)) = ei(nθ−sin(θ)) = einθe−i sin(θ).
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Meaning, let A =

∫ 2π

0

ecos(θ) cos(nθ− sin(θ)) dθ and B =

∫ 2π

0

ecos(θ) sin(nθ− sin(θ)) dθ,

so that:

A+ iB =

∫ 2π

0

ecos(θ)ei(nθ−sin(θ)) dθ =

∫ 2π

0

ecos(θ)−i sin(θ)e−inθ dθ.

Now do the substitution: z = eiθ. Again, let C be the counterclockwise oriented
circle of radius 1, centered at 0. Our integral turns into:∫

C

ez
−1

zn
dz

iz
=

1

i

∫
C

ez
−1

zn−1 dz = 2πRes
z=0

(
zn−1ez

−1
)
.

Now, we have to use the series expansion of ez
−1

. We are looking for the coefficient of
z−1 in the product zn−1ez

−1
:

zn−1ez
−1

=
∞∑
k=0

zn−1−k

k!

So, the coefficient of z−1 is
1

n!
. Hence,

A+Bi = 2πRes
z=0

(
zn−1ez

−1
)

=
2π

n!
⇒ A =

2π

n!
and B = 0.

Problem 12. Let Ω ⊂ C be an open set, and let f : Ω 99K C be a meromorphic
function. (Recall: this means that there is a subset A ⊂ Ω, such that f is defined and
holomorphic on Ω \ A; and every point of A is a pole of f).
Let γ : [a, b]→ Ω be a counterclockwise oriented contour, which does not pass through
any of the poles of f .

• Let z1, z2, . . . , zk ∈ Interior(γ) be zeroes of f(z) which are inside γ, of orders
N1, N2, . . . , Nk respectively.

• Let α1, α2, . . . , α` ∈ Interior(γ) be poles of f which are inside γ, of orders
M1,M2, . . . ,M` respectively.

Prove that
1

2πi

∫
γ

f ′(z)

f(z)
dz =

k∑
a=1

Na −
∑̀
b=1

Mb.

Solution. This is nothing but Problems 5 and 6, combined with Cauchy’s residue
theorem.


