PROBLEM SHEET 7: SOLUTIONS

Problem 1. Compute the following residues.
(a) $\operatorname{ReS}_{z=2 \pi \mathrm{i}}\left(\frac{1}{z\left(1-e^{-z}\right)}\right)$.

Solution. Change of variables $z=x+2 \pi \mathbf{i}$ changes it to (since $e^{-x-2 \pi \mathbf{i}}=e^{-x}$):

$$
\operatorname{ReS}_{x=0}\left(\frac{1}{(x+2 \pi \mathbf{i})\left(1-e^{-x}\right)}\right)=\operatorname{Res}_{x=0}\left(\frac{1}{x} \frac{1}{x+2 \pi \mathbf{i}} \cdot \frac{x}{1-e^{-x}}\right)
$$

The term in the box is defined at $x=0$. So the pole at $x=0$ is of order 1 and residue there is the value of the function in the box, at $x=0$, namely: $\frac{1}{2 \pi \mathbf{i}}$ (since $\lim _{x \rightarrow 0} \frac{x}{1-e^{-x}}=1$.)
(b) $\operatorname{Res}_{z=3 \pi}(\cot (z))$.

Solution. Change of variables $z=x+3 \pi \mathbf{i}$ changes it to $(\cos (x+3 \pi)=-\cos (x)$ and $\sin (x+3 \pi)=-\sin (x)$, so $\cot (x+3 \pi)=\cot (x))$:

$$
\operatorname{Res}_{x=0}\left(\frac{\cos (x)}{\sin (x)}\right)=\operatorname{Res}_{x=0}\left(\frac{1}{x} \cos (x) \cdot \frac{x}{\sin (x)}\right)
$$

So, the pole is of order 1 , and residue there is the value of the function in the box at $x=0$, namely 1 , since $\cos (0)=1$ and $\lim _{x \rightarrow 0} \frac{x}{\sin (x)}=1$.
(c) $\operatorname{Res}_{z=0}\left(\frac{1}{z^{2} \sin (z)}\right)$.

Solution. Multiply and divide the function by z to write:

$$
\operatorname{Res}_{z=0}\left(\frac{1}{z^{2} \sin (z)}\right)=\operatorname{Res}_{z=0}\left(\frac{1}{z^{3}} \boxed{\frac{z}{\sin (z)}}\right)
$$

So, the pole at $z=0$ is of order 3 and residue there is computed by either $\frac{1}{2}\left[\frac{d^{2}}{d z^{2}} \frac{z}{\sin z}\right]_{z=0}$, or by computing the coefficient of z^{2} in $\frac{z}{\sin (z)}$. I prefer the latter, and the computation is:

$$
\frac{z}{\sin (z)}=a_{0}+a_{1} z+a_{2} z^{2}+\cdots \Rightarrow z=\left(z-\frac{z^{3}}{6}+\cdots\right)\left(a_{0}+a_{1} z+a_{2} z^{2}+\cdots\right)
$$

Comparing coefficients of z gives $1=a_{0}$; of z^{2} gives $0=a_{1}$; of z^{3} gives $0=a_{2}-\frac{a_{0}}{6} \Rightarrow$ $a_{2}=\frac{1}{6}$. Hence $\operatorname{Res}_{z=0}\left(\frac{1}{z^{2} \sin (z)}\right)=\frac{1}{6}$.
(d) $\operatorname{Res}_{z=n \pi}\left(\frac{1}{z^{2} \sin (z)}\right), \quad\left(n \in \mathbb{Z}_{\neq 0}\right)$.

Solution. Change variables $z=x+n \pi$ and use $\sin (x+n \pi)=(-1)^{n}$ to rewrite the problem as:

$$
\operatorname{Res}_{x=0}\left(\frac{(-1)^{n}}{(x+n \pi)^{2} \sin (x)}\right)=\operatorname{Res}_{x=0}\left(\frac{1}{x} \frac{(-1)^{n}}{(x+n \pi)^{2}} \cdot \frac{x}{\sin (x)}\right)
$$

Again, using $\lim _{x \rightarrow 0} \frac{x}{\sin (x)}=1$, the value of the function in the box, at $x=0$ is $\frac{(-1)^{n}}{n^{2} \pi^{2}}$.
(e) $\operatorname{Res}_{z=0}\left(\frac{z-\sin (z)}{z}\right)$.

Solution. Since $z-\sin (z)=\frac{z^{3}}{6}-\cdots$, dividing it by z still gives a function defined at 0 . Hence the residue is 0 .
(f) $\operatorname{Res}_{z=0}\left(\frac{e^{z}-e^{-z}}{z^{4}\left(1-z^{2}\right)}\right)$.

Solution. The answer is the coefficient of z^{3} in $\frac{e^{z}-e^{-z}}{1-z^{2}}$, which we can compute as follows:

$$
\frac{e^{z}-e^{-z}}{1-z^{2}}=\left(e^{z}-e^{-z}\right) \frac{1}{1-z^{2}}=2\left(z+\frac{z^{3}}{3!}+\cdots\right)\left(1+z^{2}+z^{4}+\cdots\right)
$$

So, the coefficient of z^{3} is $2\left(1+\frac{1}{6}\right)=\frac{7}{3}$.
(g) $\operatorname{Res}_{z=0}\left(\frac{\ln (1+z) \sin (z)}{z^{5}}\right)$.

Solution. Again, the answer is the coefficient of z^{4} in $\ln (1+z) \sin (z)$ which we compute as follows:

$$
\ln (1+z) \sin (z)=\left(z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\frac{z^{4}}{4}+\cdots\right)\left(z-\frac{z^{3}}{6}+\frac{z^{5}}{5!}-\cdots\right)
$$

Coefficient of $z^{4}=-\frac{1}{6}+\frac{1}{3}=\frac{1}{6}$.
Problem 2. Prove that $\operatorname{Res}_{z=\infty}\left(\frac{2 z^{3}+7}{z(z-1)^{3}}\right)=-2$.
Solution. (see Lecture 26, §26.2) Use $\underset{z=\infty}{\operatorname{Res}}(f(z))=-\underset{w=0}{\operatorname{Res}}\left(w^{-2} f(w)\right)$ where $w=z^{-1}$.

$$
\operatorname{Res}_{z=\infty}\left(\frac{2 z^{3}+7}{z(z-1)^{3}}\right)=-\operatorname{Res}_{w=0}\left(\frac{1}{w^{2}} \cdot \frac{2+7 w^{3}}{w^{3}} \cdot \frac{w^{4}}{(1-w)^{3}}\right)=-\operatorname{Res}_{w=0}\left(\frac{1}{w} \frac{2+7 w^{3}}{(1-w)^{3}}\right)
$$

which is equal to (-1) times the value of the function in the box at $w=0$, that is -2 .
Problem 3. Let C be the counterclockwise circle of radius 3, centered at 0 . Compute the following integral, using the change of variables $w=z^{-1}$: $\int_{C} \frac{z^{3} e^{\frac{1}{z}}}{1+z^{3}} d z$.
Solution. Change of variables $w=z^{-1}$ changes C into a clockwise circle (denoted by $-C^{\prime}$), centered at 0 , of radius $1 / 3 ; d z$ into $-w^{-2} d w$. Hence:

$$
\int_{C} \frac{z^{3} e^{\frac{1}{z}}}{1+z^{3}} d z=\int_{-C^{\prime}} \frac{w^{-3} e^{w}}{1+w^{-3}}\left(-w^{-2} d w\right)=\int_{C^{\prime}} \frac{e^{w}}{w^{3}+1} \frac{d w}{w^{2}}
$$

By Cauchy's integral formula, this integral is given by: $2 \pi \mathbf{i}\left[\frac{d}{d w} \frac{e^{w}}{w^{3}+1}\right]_{w=0}$, which is equal to $2 \pi \mathbf{i}\left[\frac{\left(w^{3}+1\right) e^{w}-e^{w} \cdot 3 w^{2}}{\left(w^{3}+1\right)^{2}}\right]_{w=0}=2 \pi \mathbf{i}$.
Problem 4. Let $n<m$ be two positive integers. Let $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ and $Q(z)=b_{m} z^{m}+\cdots+b_{0}$ be two polynomials of degrees n and m respectively. Prove that $\operatorname{Res}_{z=\infty}\left(\frac{P(z)}{Q(z)}\right)=\left\{\begin{array}{cc}0 & \text { if } n<m-1 \\ -\frac{a_{n}}{b_{m}} & \text { if } n=m-1\end{array}\right.$.
Solution. I am again going to use $\underset{z=\infty}{\operatorname{Res}}(f(z))=-\operatorname{Res}_{w=0}\left(w^{-2} f(w)\right)$ where $w=z^{-1}$.

$$
\begin{aligned}
& \operatorname{Res}_{z=\infty}\left(\frac{P(z)}{Q(z)}\right)=-\operatorname{Res}_{w=0}\left(w^{-2} \frac{P\left(w^{-1}\right)}{Q\left(w^{-1}\right)}\right) \\
= & -\operatorname{Res}_{w=0}\left(\frac{w^{m}}{w^{n+2}} \frac{a_{n}+a_{n-1} w+\cdots+a_{0} w^{n}}{b_{m}+b_{m-1} w+\cdots+b_{0} w^{m}}\right)
\end{aligned}
$$

Now $m \geq n+1$ is given. If $m \geq n+2$, the function written above is holomorphic at $w=0$, so its residue at $w=0$ is 0 . If $m=n+1$, then the residue is simply (-1) times the value of the fraction in the box at $w=0$ equal to $-\frac{a_{n}}{b_{m}}$.
Problem 5. Let $\Omega \subset \mathbb{C}$ be an open set and $f: \Omega \rightarrow \mathbb{C}$ be a holomorphic function. Assume that $z_{0} \in \Omega$ is a zero of f of order $N \in \mathbb{Z}_{\geq 1}$. Prove that $\operatorname{Res}_{z=z_{0}}\left(\frac{f^{\prime}(z)}{f(z)}\right)=N$.
Solution. f vanishes at z_{0} to order N means $f(z)=\left(z-z_{0}\right)^{N} g(z)$, and g does not vanish at all in a small enough disc around z_{0}. This allows us to compute:

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{N\left(z-z_{0}\right)^{N-1} g(z)+\left(z-z_{0}\right)^{N} g^{\prime}(z)}{\left(z-z_{0}\right)^{N} g(z)}=\frac{N}{z-z_{0}}+\frac{g^{\prime}(z)}{g(z)}
$$

Now $\frac{g^{\prime}(z)}{g(z)}$ is holomorphic near z_{0}, hence has residue 0 at z_{0}. So,

$$
\operatorname{Res}_{z=z_{0}}\left(\frac{f^{\prime}(z)}{f(z)}\right)=\operatorname{Res}_{z=z_{0}}\left(\frac{N}{z-z_{0}}\right)=N .
$$

Problem 6. Let $\Omega \subset \mathbb{C}$ be an open set, $\alpha \in \Omega$, and $f: \Omega \backslash\{\alpha\} \rightarrow \mathbb{C}$ be a holomorphic function, such that α is a pole of f, of order $M \in \mathbb{Z}_{\geq 1}$. Prove that $\operatorname{Res}_{z=\alpha}\left(\frac{f^{\prime}(z)}{f(z)}\right)=-M$. Solution. Same as Problem 5, just change N to $-M$.

Problem 7. Compute the following integrals:
(a) $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin (\theta)}$.

Solution. Write $z=e^{\mathbf{i} \theta}$ so that $\sin (\theta)=\frac{z-z^{-1}}{2 \mathbf{i}}$ and $d \theta=\frac{d z}{\mathbf{i} z}$. Let C be the counterclockwise circle around 0 of radius 1 . Then the integral we have to compute is:

$$
\int_{C} \frac{1}{5+4\left(\frac{z-z^{-1}}{2 \mathbf{i}}\right)} \frac{d z}{\mathbf{i} z}=\int_{C} \frac{d z}{2 z^{2}+5 \mathbf{i} z-2}
$$

Now the quadratic equation $2 z^{2}+5 \mathbf{i} z-2=0$ has two solutions: $\alpha_{1}=-\frac{\mathbf{i}}{2}$ and $\alpha_{2}=-2 \mathbf{i} . \alpha_{1}$ is within C and α_{2} is outside. So, we can compute the integral using Cauchy's formula:

$$
\int_{C} \frac{d z}{2 z^{2}+5 \mathbf{i} z-2}=\int_{C} \frac{d z}{2(z+2 \mathbf{i})\left(z+\frac{\mathbf{i}}{2}\right)}=2 \pi \mathbf{i} \frac{1}{2\left(2 \mathbf{i}-\frac{\mathbf{i}}{2}\right)}
$$

which gives the answer: $\frac{2 \pi}{3}$.
(b) $\int_{0}^{2 \pi} \frac{d \theta}{(a+\cos (\theta))^{2}}, \quad\left(a \in \mathbb{R}_{>1}\right)$.

Solution. Again, change of variables $z=e^{\mathrm{i} \theta}$ turns the integral in question to:

$$
\int_{C} \frac{1}{\left(a+\frac{z+z^{-1}}{2}\right)^{2}} \frac{d z}{\mathbf{i} z}=\frac{4}{\mathbf{i}} \int_{C} \frac{z}{\left(z^{2}+2 a z+1\right)^{2}} d z
$$

$z^{2}+2 a z+1=0$ has two solutions: $\alpha_{1}=-a+\sqrt{a^{2}-1}$ and $\alpha_{2}=-a-\sqrt{a^{2}-1}$. As $a>1,\left|\alpha_{2}\right|=a+\sqrt{a^{2}-1}>1$, hence α_{2} is outside of C. As $\alpha_{1} \alpha_{2}=1, \alpha_{1}$ must be inside C.

$$
\begin{gathered}
\frac{4}{\mathbf{i}} \int_{C} \frac{z}{\left(z^{2}+2 a z+1\right)^{2}} d z=\frac{4}{\mathbf{i}} \int_{C} \frac{z}{\left(z-\alpha_{1}\right)^{2}\left(z-\alpha_{2}\right)^{2}} d z=\frac{4}{\mathbf{i}} 2 \pi \mathbf{i}\left[\frac{d}{d z}\left(\frac{z}{\left(z-\alpha_{2}\right)^{2}}\right)\right]_{z=\alpha_{1}} \\
=8 \pi\left[\frac{1}{\left(z-\alpha_{2}\right)^{2}}-\frac{2 z}{\left(z-\alpha_{2}\right)^{3}}\right]_{z=\alpha_{1}}=8 \pi \frac{-\left(\alpha_{1}+\alpha_{2}\right)}{\left(\alpha_{1}-\alpha_{2}\right)^{3}} \\
=8 \pi \frac{2 a}{\left(2 \sqrt{a^{2}-1}\right)^{3}}=\frac{2 \pi a}{\left(a^{2}-1\right)^{\frac{3}{2}}}
\end{gathered}
$$

(c) $\int_{0}^{2 \pi} \frac{d \theta}{1+\sin ^{2}(\theta)}$.

Solution. $z=e^{\mathrm{i} \theta}$ changes the problem to:

$$
\int_{C} \frac{1}{1+\left(\frac{z-z^{-1}}{2 \mathbf{i}}\right)^{2}} \frac{d z}{\mathbf{i} z}=-\frac{4}{\mathbf{i}} \int_{C} \frac{z}{z^{4}-6 z^{2}+1} d z
$$

Now, $z^{4}-6 z^{2}+1=0$ is a quadratic equation in z^{2}, which gives us two solutions $z^{2}=r_{1}, r_{2}$, where:

$$
r_{1}=3+2 \sqrt{2} \quad \text { and } \quad r_{2}=3-2 \sqrt{2} .
$$

r_{1} is clearly outside of C; and because of $r_{1} r_{2}=1$, we must have r_{1} inside C. Thus, $z^{4}-6 z^{2}+1=\left(z^{2}-r_{1}\right)\left(z^{2}-r_{2}\right)=\left(z^{2}-r_{1}\right)\left(z-\sqrt{r_{2}}\right)\left(z+\sqrt{r_{2}}\right)$. Our integral can now again be computed using Cauchy's formula:

$$
\begin{gathered}
-\frac{4}{\mathbf{i}} \int_{C} \frac{z}{z^{4}-6 z^{2}+1} d z=-\frac{4}{\mathbf{i}} \int_{C} \frac{z}{\left(z^{2}-r_{1}\right)\left(z-\sqrt{r_{2}}\right)\left(z+\sqrt{r_{2}}\right)} d z \\
=-\frac{4}{\mathbf{i}} 2 \pi \mathbf{i}\left(\frac{\sqrt{r_{2}}}{\left(r_{2}-r_{1}\right) 2 \sqrt{r_{1}}}+\frac{-\sqrt{r_{2}}}{\left(r_{2}-r_{1}\right)\left(-2 \sqrt{r_{2}}\right)}\right) \\
=\frac{8 \pi}{r_{1}-r_{2}}=\frac{8 \pi}{4 \sqrt{2}}=\sqrt{2} \pi .
\end{gathered}
$$

(d) $\int_{0}^{2 \pi} \frac{\cos (2 \theta) d \theta}{1-2 p \cos (\theta)+p^{2}},(0<p<1)$.

Solution. Perform the change of variables $z=e^{\mathrm{i} \theta}$ again to convert the integral in question to:

$$
\int_{C} \frac{\frac{z+z^{-1}}{2}}{1-2 p\left(\frac{z+z^{-1}}{2}\right)+p^{2}} \frac{d z}{\mathbf{i} z}=\frac{1}{2 \mathbf{i}} \int_{C} \frac{z^{4}+1}{z^{2}\left(z-p z^{2}-p+p^{2} z\right)} d z
$$

Using the factorization: $z-p z^{2}-p+p^{2} z=(z-p)(1-p z)$, we see that the integrand has 2 singularities inside C : at $z=0$ and $z=p$ (since $0<p<1$). Let C_{1} be a small (counterclockwise) circle around p and C_{2} around 0 .
$\frac{1}{2 \mathbf{i}} \int_{C} \frac{z^{4}+1}{z^{2}(z-p)(1-p z)} d z=\frac{1}{2 \mathbf{i}} \int_{C_{1}} \frac{z^{4}+1}{z^{2}(z-p)(1-p z)} d z+\frac{1}{2 \mathbf{i}} \int_{C_{2}} \frac{z^{4}+1}{z^{2}(z-p)(1-p z)} d z$
Now,

$$
\begin{aligned}
& \frac{1}{2 \mathbf{i}} \int_{C_{1}} \frac{z^{4}+1}{z^{2}(z-p)(1-p z)} d z=\frac{2 \pi \mathbf{i}}{2 \mathbf{i}} \cdot \frac{p^{4}+1}{p^{2}\left(1-p^{2}\right)}=\pi \frac{p^{4}+1}{p^{2}\left(1-p^{2}\right)} . \\
& \frac{1}{2 \mathbf{i}} \int_{C_{2}} \frac{z^{4}+1}{z^{2}(z-p)(1-p z)} d z=\frac{2 \pi \mathbf{i}}{2 \mathbf{i}} \cdot\left[\frac{d}{d z}\left(\frac{z^{4}+1}{(z-p)(1-p z)}\right)\right]_{z=0} \\
& =\pi\left[\frac{4 z^{3}}{(z-p)(1-p z)}-\frac{z^{4}+1}{(z-p)^{2}(1-p z)}+\frac{p\left(z^{4}+1\right)}{(z-p)(1-p z)^{2}}\right]_{z=0} \\
& =-\pi \frac{1+p^{2}}{p^{2}} .
\end{aligned}
$$

Combining, we get:

$$
\begin{aligned}
& \frac{1}{2 \mathbf{i}} \int_{C} \frac{z^{4}+1}{z^{2}(z-p)(1-p z)} d z=\pi\left(\frac{1+p^{4}}{p^{2}\left(1-p^{2}\right)}-\frac{1+p^{2}}{p^{2}}\right) \\
= & \pi \frac{1+p^{4}-\left(1-p^{2}\right)\left(1+p^{2}\right)}{p^{2}\left(1-p^{2}\right)}=\pi \frac{1+p^{4}-\left(1-p^{4}\right)}{p^{2}\left(1-p^{2}\right)}=\frac{2 \pi p^{2}}{1-p^{2}} .
\end{aligned}
$$

Problem 8. For $n \in \mathbb{Z}_{\geq 0}$, prove that $\int_{0}^{\pi} \sin ^{2 n}(\theta) d \theta=\frac{(2 n)!}{2^{2 n}(n!)^{2}} \pi$.
Solution. Let us compute $\int_{0}^{2 \pi} \sin ^{2 n}(\theta) d \theta$ first (we will divide it by 2 in the end). Again we do the change of variables $z=e^{\mathrm{i} \theta}$. Our function is going to become:

$$
\sin ^{2 n}(\theta)=\left(\frac{z-z^{-1}}{2 \mathbf{i}}\right)^{2 n}=\frac{(-1)^{n}}{2^{2 n}}\left(z-z^{-1}\right)^{2 n}
$$

And the integral we are trying to compute is:

$$
\int_{0}^{2 \pi} \sin ^{2 n}(\theta) d \theta=\int_{C} \frac{(-1)^{n}}{2^{2 n}}\left(z-z^{-1}\right)^{2 n} \frac{d z}{\mathbf{i} z}=\frac{(-1)^{n}}{2^{2 n} \mathbf{i}} \int_{C}\left(z-z^{-1}\right)^{2 n} \frac{d z}{z}
$$

We can expand $\left(z-z^{-1}\right)^{2 n}$ using the binomial formula:

$$
\left(z-z^{-1}\right)^{2 n}=\sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k} z^{2 n-k}\left(z^{-1}\right)^{k}=\sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k} z^{2 n-2 k}
$$

Therefore our integral becomes:

$$
\frac{(-1)^{n}}{2^{2 n} \mathbf{i}} \int_{C}\left(z-z^{-1}\right)^{2 n} \frac{d z}{z}=\frac{(-1)^{n}}{2^{2 n} \mathbf{i}} \cdot\left(\sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k} \int_{C} z^{2 n-2 k-1} d z\right)
$$

Using the fact that $\int_{C} z^{\ell} d z$ is $2 \pi \mathbf{i}$ for $\ell=-1$ and 0 otherwise, we see that the only term in the sum that gives a non-zero integral is when $k=n$. So, our integral simplifies to:

$$
\int_{0}^{2 \pi} \sin ^{2 n}(\theta) d \theta=\frac{(-1)^{n}}{2^{2 n} \mathbf{i}} 2 \pi \mathbf{i}(-1)^{n}\binom{2 n}{n}=\frac{2 \pi}{2^{2 n}} \frac{(2 n)!}{(n!)^{2}}
$$

Hence, $\int_{0}^{\pi} \sin ^{2 n}(\theta) d \theta=\frac{\pi}{2^{2 n}} \frac{(2 n)!}{(n!)^{2}}$.
Problem 9. Compute the following integrals.
(a) $\int_{-\infty}^{\infty} \frac{d x}{x^{4}+1}$.

Solution. We are going to integrate $\frac{1}{z^{4}+1}$ along C_{R}. See the figure below.

Figure 1. Contour C_{R} consisting of two smooth pieces.
Step 1. Let us estimate the function $\frac{1}{z^{4}+1}$ as z lies on γ_{R}. By triangle inequality $\left|z^{4}+1\right| \geq\left|z^{4}\right|-1=R^{4}-1$, so by our important inequality:

$$
\left|\int_{\gamma_{R}} \frac{d z}{z^{4}+1}\right| \leq \frac{1}{R^{4}-1} \cdot \pi R \rightarrow 0 \text { as } R \rightarrow \infty .
$$

Step 2. $\int_{C_{R}} \frac{1}{z^{4}+1} d z$. (This computation is very similar to the one given in Lecture $27, \S 27.5)$. The solutions of $z^{4}=-1$ are the following (see Figure above).

$$
\begin{array}{ll}
\alpha_{1}=e^{\frac{\pi}{4} \mathbf{i}}, & \alpha_{2}=e^{\frac{3 \pi}{4} \mathbf{i}} \\
\beta_{2}=e^{\frac{5 \pi}{4} \mathbf{i}}, & \beta_{1}=e^{\frac{7 \pi}{4}} \mathbf{i}
\end{array}
$$

So, $\int_{C_{R}} \frac{1}{z^{4}+1} d z=2 \pi \mathbf{i}\left(\operatorname{Res}_{z=\alpha_{1}}\left(\frac{1}{z^{4}+1}\right)+\operatorname{ReS}_{z=\alpha_{2}}\left(\frac{1}{z^{4}+1}\right)\right)$.

$$
\begin{aligned}
\operatorname{Res}_{z=\alpha_{1}}\left(\frac{1}{z^{4}+1}\right)= & \lim _{z \rightarrow \alpha_{1}} \frac{z-\alpha_{1}}{z^{4}+1}=\lim _{z \rightarrow \alpha_{1}} \frac{1}{4 z^{3}}=\frac{1}{4 \alpha_{1}^{3}} \\
& =\frac{\alpha_{1}}{4 \alpha_{1}^{4}}=-\frac{\alpha_{1}}{4}
\end{aligned}
$$

Now, $\alpha_{1}+\alpha_{2}=e^{\mathbf{i} \pi / 4}+e^{\mathbf{i} 3 \pi / 4}=e^{\mathbf{i} \pi / 4}-e^{-\mathbf{i} \pi / 4}=2 \mathbf{i} \sin (\pi / 4)=\sqrt{2} \mathbf{i}$.
Thus, the sum of the residues is:

$$
\int_{C_{R}} \frac{1}{z^{4}+1} d z=-2 \pi \mathbf{i} \frac{\alpha_{1}+\alpha_{2}}{4}=-2 \pi \mathbf{i} \frac{\sqrt{2} \mathbf{i}}{4}=\frac{\pi}{\sqrt{2}}
$$

Final step. The integral in question $\int_{-\infty}^{\infty} \frac{d x}{x^{4}+1}$ is the limit

$$
\lim _{R \rightarrow \infty}\left(\int_{C_{R}} \frac{1}{z^{4}+1} d z-\int_{\gamma_{R}} \frac{1}{z^{4}+1} d z\right) .
$$

The latter being zero, we get that the answer is $\frac{\pi}{\sqrt{2}}$.
(b) $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+9\right)\left(x^{2}+4\right)^{2}} d x$.

Solution. We again are going to compute the integral over C_{R} (contour from the previous problem). The singularities of the integrand are $\pm 2 \mathbf{i}$ and $\pm 3 \mathbf{i}$, of which $2 \mathbf{i}, 3 \mathbf{i}$ are within C_{R} and the other two are outside.

Step 1. Figure out the bound of the integrand as z lies on γ_{R} :

$$
\left|\int_{\gamma_{R}} \frac{z^{2}}{\left(z^{2}+9\right)\left(z^{2}+4\right)^{2}} d z\right| \leq \frac{R^{2}}{\left(R^{2}-9\right)\left(R^{2}-4\right)^{2}} \cdot \pi R \rightarrow 0 \text { as } R \rightarrow \infty .
$$

Step 2. Compute the integral over C_{R} :

$$
\begin{gathered}
\int_{C_{R}} \frac{z^{2}}{\left(z^{2}+9\right)\left(z^{2}+4\right)^{2}} d z=\int_{C_{R}} \frac{z^{2}}{(z+3 \mathbf{i})(z+2 \mathbf{i})^{2}} \frac{d z}{(z-3 \mathbf{i})(z-2 \mathbf{i})^{2}} \\
2 \pi \mathbf{i}\left(\left[\frac{z^{2}}{(z+3 \mathbf{i})\left(z^{2}+4\right)^{2}}\right]_{z=3 \mathbf{i}}+\left[\frac{d}{d z}\left(\frac{z^{2}}{\left(z^{2}+9\right)(z+2 \mathbf{i})^{2}}\right)\right]_{z=2 \mathbf{i}}\right) \\
=2 \pi \mathbf{i}\left(\frac{(3 \mathbf{i})^{2}}{(-9+4)^{2}(6 \mathbf{i})}+\left[\frac{2 z}{\left(z^{2}+9\right)(z+2 \mathbf{i})^{2}}-\frac{z^{2} .2 z}{\left(z^{2}+9\right)^{2}(z+2 \mathbf{i})^{2}}-\frac{2 z^{2}}{\left(z^{2}+9\right)(z+2 \mathbf{i})^{3}}\right]_{z=2 \mathbf{i}}\right) \\
=2 \pi \mathbf{i}\left(\frac{-9}{25(6 \mathbf{i})}+\frac{4 \mathbf{i}}{5(4 \mathbf{i})^{2}}-\frac{(2 \mathbf{i})^{2} 4 \mathbf{i}}{(25)(4 \mathbf{i})^{2}}-\frac{2(2 \mathbf{i})^{2}}{5(4 \mathbf{i})^{3}}\right) \\
=2 \pi\left(\frac{-3}{50}+\frac{1}{20}+\frac{1}{25}-\frac{1}{40}\right)=\frac{\pi}{100} .
\end{gathered}
$$

Final step. Put everything together to get:

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+9\right)\left(x^{2}+4\right)^{2}} d x=\frac{\pi}{100} .
$$

Problem 10. Let $a, b \in \mathbb{R}_{>0}$ be two positive real numbers. Prove that:

$$
\int_{0}^{\infty} \frac{x^{4}}{\left(a+b x^{2}\right)^{4}} d x=\frac{\pi}{32 a^{\frac{3}{2}} b^{\frac{5}{2}}}
$$

Solution. Let us write $t=a / b$ so that the integrand has singularities at $\pm t \mathbf{t}$. Again, we are going to integrate $\frac{z^{4}}{\left(a+b z^{2}\right)^{4}}$ over the contour C_{R} from the figure above (we will have to divide the answer by 2 at the end, since the problem is only asking for \int_{0}^{∞}.) Step 1. This is pretty much the same as the ones given before. We estimate the integral:

$$
\left|\int_{\gamma_{R}} \frac{z^{4}}{b^{4}\left(z^{2}+t\right)^{4}} d z\right| \leq \frac{R^{4}}{b^{4}\left(R^{2}-t\right)^{4}} \cdot \pi R \rightarrow 0 \text { as } R \rightarrow \infty .
$$

Step 2. This is going to be a lengthy computation.

$$
\frac{1}{b^{4}} \int_{C_{R}} \frac{z^{4}}{(z+t \mathbf{i})^{4}(z-t \mathbf{i})^{4}} d z=\frac{2 \pi \mathbf{i}}{b^{4}} \cdot X
$$

where X can be computed either as $\frac{1}{6}\left[\frac{d^{3}}{d z^{3}}\left(\frac{z^{4}}{(z+t \mathbf{i})^{4}}\right)\right]_{z=t \mathbf{i}}$, or as the coefficient of $(z-t \mathbf{i})^{3}$ in the Taylor series expansion of $\frac{z^{4}}{(z+t \mathbf{i})^{4}}$ near $z=t \mathbf{i}$. I like the second way (after computing first derivative it becomes clear that the calculation is only going to get messy).

So, a little change of variable $z=w+t \mathbf{i}$ turns our problem to:

$$
\begin{gathered}
X=\text { Coefficient of } w^{3} \text { in the Taylor series of }\left(\frac{w+t \mathbf{i}}{w+2 t \mathbf{i}}\right)^{4} \text { near } w=0 . \\
\left(\frac{w+t \mathbf{i}}{w+2 t \mathbf{i}}\right)^{4}=(w+t \mathbf{i})^{4} \cdot \frac{1}{(2 t \mathbf{i})^{4}} \cdot \frac{1}{\left(1+\frac{w}{2 t \mathbf{i}}\right)^{4}} \\
=\frac{1}{(2 t \mathbf{i})^{4}}\left(w^{4}+4 w^{3}(t \mathbf{i})+6 w^{2}(t \mathbf{i})^{2}+4 w(t \mathbf{i})^{3}+(t \mathbf{i})^{4}\right)\left(1-4 \frac{w}{2 t \mathbf{i}}+10 \frac{w^{2}}{(2 t \mathbf{i})^{2}}-20 \frac{w^{3}}{(2 t \mathbf{i})^{3}}+\cdots\right)
\end{gathered}
$$

(here I opened the first term using binomial formula, and the second using $\frac{1}{(1-z)^{\ell+1}}=$ $\left.\sum_{n=0}^{\infty}\binom{n+\ell}{\ell} z^{n}.\right)$

So, the coefficient of w^{3} in this product is:

$$
X=\frac{1}{16 t^{4}}(t \mathbf{i})\left(4-12+10-\frac{5}{2}\right)=\frac{\mathbf{i}}{16 t^{3}}\left(-\frac{1}{2}\right) .
$$

Hence, we get:

$$
\frac{1}{b^{4}} \int_{C_{R}} \frac{z^{4}}{(z+t \mathbf{i})^{4}(z-t \mathbf{i})^{4}} d z=\frac{2 \pi \mathbf{i}}{b^{4}} \frac{\mathbf{i}}{16 t^{3}}\left(\frac{-1}{2}\right)=\frac{\pi}{16 t^{3} b^{4}}=\frac{\pi}{16 a^{\frac{3}{2}} b^{4-\frac{3}{2}}} .
$$

(since $t=a b^{-1}$.)
Final step. Gathering the results from the previous two steps, and dividing by 2, we get:

$$
\int_{0}^{\infty} \frac{x^{4}}{\left(a+b x^{2}\right)^{4}} d x=\frac{\pi}{32 a^{\frac{3}{2}} b^{\frac{5}{2}}}
$$

Problem 11. (Bonus) Let $n \in \mathbb{Z}_{\geq 0}$. Prove that

$$
\int_{0}^{2 \pi} e^{\cos (\theta)} \cos (n \theta-\sin (\theta)) d \theta=\frac{2 \pi}{n!} \quad \text { and } \quad \int_{0}^{2 \pi} e^{\cos (\theta)} \sin (n \theta-\sin (\theta)) d \theta=0
$$

Solution. We are going to combine the two integrals as real and imaginary parts of one:

$$
\cos (n \theta-\sin (\theta))+\mathbf{i} \sin (n \theta-\sin (\theta))=e^{\mathbf{i}(n \theta-\sin (\theta))}=e^{\mathbf{i} n \theta} e^{-\mathbf{i} \sin (\theta)}
$$

Meaning, let $A=\int_{0}^{2 \pi} e^{\cos (\theta)} \cos (n \theta-\sin (\theta)) d \theta$ and $B=\int_{0}^{2 \pi} e^{\cos (\theta)} \sin (n \theta-\sin (\theta)) d \theta$, so that:

$$
A+\mathbf{i} B=\int_{0}^{2 \pi} e^{\cos (\theta)} e^{\mathbf{i}(n \theta-\sin (\theta))} d \theta=\int_{0}^{2 \pi} e^{\cos (\theta)-\mathbf{i} \sin (\theta)} e^{-\mathbf{i} n \theta} d \theta
$$

Now do the substitution: $z=e^{\mathrm{i} \theta}$. Again, let C be the counterclockwise oriented circle of radius 1 , centered at 0 . Our integral turns into:

$$
\int_{C} e^{z^{-1}} z^{n} \frac{d z}{\mathbf{i} z}=\frac{1}{\mathbf{i}} \int_{C} e^{z^{-1}} z^{n-1} d z=2 \pi \operatorname{Res}_{z=0}\left(z^{n-1} e^{z^{-1}}\right)
$$

Now, we have to use the series expansion of $e^{z^{-1}}$. We are looking for the coefficient of z^{-1} in the product $z^{n-1} e^{z^{-1}}:$

$$
z^{n-1} e^{z^{-1}}=\sum_{k=0}^{\infty} \frac{z^{n-1-k}}{k!}
$$

So, the coefficient of z^{-1} is $\frac{1}{n!}$. Hence,

$$
A+B \mathbf{i}=2 \pi \operatorname{Res}_{z=0}\left(z^{n-1} e^{z^{-1}}\right)=\frac{2 \pi}{n!} \Rightarrow A=\frac{2 \pi}{n!} \text { and } B=0 .
$$

Problem 12. Let $\Omega \subset \mathbb{C}$ be an open set, and let $f: \Omega \rightarrow \mathbb{C}$ be a meromorphic function. (Recall: this means that there is a subset $A \subset \Omega$, such that f is defined and holomorphic on $\Omega \backslash A$; and every point of A is a pole of f).
Let $\gamma:[a, b] \rightarrow \Omega$ be a counterclockwise oriented contour, which does not pass through any of the poles of f.

- Let $z_{1}, z_{2}, \ldots, z_{k} \in \operatorname{Interior}(\gamma)$ be zeroes of $f(z)$ which are inside γ, of orders $N_{1}, N_{2}, \ldots, N_{k}$ respectively.
- Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell} \in \operatorname{Interior}(\gamma)$ be poles of f which are inside γ, of orders $M_{1}, M_{2}, \ldots, M_{\ell}$ respectively.
Prove that $\frac{1}{2 \pi \mathbf{i}} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{a=1}^{k} N_{a}-\sum_{b=1}^{\ell} M_{b}$.
Solution. This is nothing but Problems 5 and 6, combined with Cauchy's residue theorem.

