COMPLEX ANALYSIS: PROBLEM SHEET 7

Problem 1. Compute the following residues.
(a) $\operatorname{Res}_{z=2 \pi \mathrm{i}}\left(\frac{1}{z\left(1-e^{-z}\right)}\right)$,
(b) $\operatorname{Res}_{z=3 \pi}(\cot (z))$,
(c) $\operatorname{Res}_{z=0}\left(\frac{1}{z^{2} \sin (z)}\right)$,
(d) $\operatorname{ReS}_{z=n \pi}\left(\frac{1}{z^{2} \sin (z)}\right), \quad\left(n \in \mathbb{Z}_{\neq 0}\right)$,
(e) $\operatorname{Res}_{z=0}\left(\frac{z-\sin (z)}{z}\right)$,
(f) $\operatorname{Res}_{z=0}\left(\frac{e^{z}-e^{-z}}{z^{4}\left(1-z^{2}\right)}\right)$,
(g) $\operatorname{Res}_{z=0}\left(\frac{\ln (1+z) \sin (z)}{z^{5}}\right)$.

Problem 2. Prove that $\operatorname{Res}_{z=\infty}\left(\frac{2 z^{3}+7}{z(z-1)^{3}}\right)=-2$.
(Hint: see problem 4 below).
Problem 3. Let C be the counterclockwise circle of radius 3, centered at 0 . Compute the following integral, using the change of variables $w=z^{-1}$: $\int_{C} \frac{z^{3} e^{\frac{1}{z}}}{1+z^{3}} d z$.
Problem 4. Let $n<m$ be two positive integers. Let $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ and $Q(z)=b_{m} z^{m}+\cdots+b_{0}$ be two polynomials of degrees n and m respectively. Prove that $\operatorname{Res}_{z=\infty}\left(\frac{P(z)}{Q(z)}\right)=\left\{\begin{array}{cc}0 & \text { if } n<m-1 \\ -\frac{a_{n}}{b_{m}} & \text { if } n=m-1\end{array}\right.$.
(Hint: we have already solved this problem in Lecture 19.)
Problem 5. Let $\Omega \subset \mathbb{C}$ be an open set and $f: \Omega \rightarrow \mathbb{C}$ be a holomorphic function. Assume that $z_{0} \in \Omega$ is a zero of f of order $N \in \mathbb{Z}_{\geq 1}$. Prove that $\operatorname{Res}_{z=z_{0}}\left(\frac{f^{\prime}(z)}{f(z)}\right)=N$. (Hint: f vanishes at z_{0} to order N means $f(z)=\left(z-z_{0}\right)^{N} g(z)$, and g does not vanish at all in a small enough disc around z_{0} - see Lemma 25.2 and its proof).

Problem 6. Let $\Omega \subset \mathbb{C}$ be an open set, $\alpha \in \Omega$, and $f: \Omega \backslash\{\alpha\} \rightarrow \mathbb{C}$ be a holomorphic function, such that α is a pole of f, of order $M \in \mathbb{Z}_{\geq 1}$. Prove that $\operatorname{Res}_{z=\alpha}\left(\frac{f^{\prime}(z)}{f(z)}\right)=-M$.

Problem 7. Compute the following integrals:
(a) $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin (\theta)}$,
(b) $\int_{0}^{2 \pi} \frac{d \theta}{(a+\cos (\theta))^{2}},\left(a \in \mathbb{R}_{>1}\right)$,
(c) $\int_{0}^{2 \pi} \frac{d \theta}{1+\sin ^{2}(\theta)}$,
(d) $\int_{0}^{2 \pi} \frac{\cos (2 \theta) d \theta}{1-2 p \cos (\theta)+p^{2}},(0<p<1)$,

Problem 8. For $n \in \mathbb{Z}_{\geq 0}$, prove that $\int_{0}^{\pi} \sin ^{2 n}(\theta) d \theta=\frac{(2 n)!}{2^{2 n}(n!)^{2}} \pi$.
Problem 9. Compute the following integrals.
(a) $\int_{-\infty}^{\infty} \frac{d x}{x^{4}+1}, \quad$ (b) $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+9\right)\left(x^{2}+4\right)^{2}} d x$.

Problem 10. Let $a, b \in \mathbb{R}_{>0}$ be two positive real numbers. Prove that:

$$
\int_{0}^{\infty} \frac{x^{4}}{\left(a+b x^{2}\right)^{4}} d x=\frac{\pi}{32 a^{\frac{3}{2}} b^{\frac{5}{2}}}
$$

Problem 11. (Bonus) Let $n \in \mathbb{Z}_{\geq 0}$. Prove that

$$
\int_{0}^{2 \pi} e^{\cos (\theta)} \cos (n \theta-\sin (\theta)) d \theta=\frac{2 \pi}{n!} \quad \text { and } \quad \int_{0}^{2 \pi} e^{\cos (\theta)} \sin (n \theta-\sin (\theta)) d \theta=0
$$

(Hint: combine the two integrals as real and imaginary parts of one:

$$
\cos (n \theta-\sin (\theta))+\mathbf{i} \sin (n \theta-\sin (\theta))=e^{\mathbf{i}(n \theta-\sin (\theta))}=e^{\mathbf{i} n \theta} e^{-\mathbf{i} \sin (\theta)}
$$

Now do the substitution: $z=e^{\mathbf{i} \theta}$.)
Problem 12. (Combine problems 5 and 6 with Cauchy's residue theorem). Let $\Omega \subset \mathbb{C}$ be an open set, and let $f: \Omega \rightarrow \mathbb{C}$ be a meromorphic function. (Recall: this means that there is a subset $A \subset \Omega$, such that f is defined and holomorphic on $\Omega \backslash A$; and every point of A is a pole of $f)$.
Let $\gamma:[a, b] \rightarrow \Omega$ be a counterclockwise oriented contour, which does not pass through any of the poles of f.

- Let $z_{1}, z_{2}, \ldots, z_{k} \in \operatorname{Interior}(\gamma)$ be zeroes of $f(z)$ which are inside γ, of orders $N_{1}, N_{2}, \ldots, N_{k}$ respectively.
- Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell} \in \operatorname{Interior}(\gamma)$ be poles of f which are inside γ, of orders $M_{1}, M_{2}, \ldots, M_{\ell}$ respectively.
Prove that $\frac{1}{2 \pi \mathbf{i}} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{a=1}^{k} N_{a}-\sum_{b=1}^{\ell} M_{b}$.

