
COMPLEX ANALYSIS: PROBLEM SHEET 8

I. Problems from Lecture 28. Problems 1–3 below use Jordan’s lemma from §28.1
and Lemma 28.4 to apply the technique of indenting a contour (see Figure 1 below).

Figure 1. Indented contour Cr,R consisting of 4 smooth pieces.

Problem 1. Prove that

∫ ∞
0

sin(x)

x
dx =

π

2
.

Problem 2. Prove that

∫ ∞
0

sin3(x)

x3
dx =

3π

8
.

(Hint: consider f(z) = e3iz − 3eiz + 2. Verify that for x ∈ R, Im(f(x)) = −4 sin3(x)

and that
f(z)

z3
has a pole of order 1 at z = 0, so Lemma 28.4 applies.)

Problem 3. Let a, b ∈ R>0. Prove that

∫ ∞
0

cos(2ax)− cos(2bx)

x2
dx = π(b− a).

II. Problems from Lecture 30. Problems 4–6 below involve the Laplace transform.
See Lecture 30, §30.5.

Problem 4. Let n ∈ Z≥0 and ϕ(t) =
tn

n!
. Prove that the Laplace transform

Lϕ(z) = z−n−1, if Re(z) > 0.

Problem 5. Let ϕ(t) = et. Prove that Lϕ(z) =
1

z − 1
, if Re(z) > 1.

Problem 6. Let ϕ(t) be a continuous function of a real variable t ∈ R≥0. Let c ∈ R
and define ψ(t) = ectϕ(t). Prove that Lψ(z) = Lϕ(z − c).

III. Problems from Lectures 31, 32 - Gamma function. For the rest of the
problems, you can use the following facts.
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2 PROBLEM SHEET 8

(1) Definition of Γ(z) (Weierstrass). Γ : C 99K C is a meromorphic function with
poles of order 1 at z = 0,−1,−2, . . .

Γ(z) =
1

zeγz

∞∏
n=1

{(
1 +

z

n

)−1
e

z
n

}
where γ is the Euler–Mascheroni constant (see Lecture 32, §32.1–32.3).

(2) For Re(z) > 0, Γ(z) =

∫ ∞
0

tz−1e−t dt (Euler’s integral).

(3) Γ(z + 1) = zΓ(z). Γ(n) = (n − 1)!, for n ∈ Z≥1. (These facts were proved
in Lecture 31, §31.3, 31.4, using Euler’s integral. It will be beneficial to prove
these directly from Weierstrass’ formula - see Problem 8 below.)

(4) Γ(z)Γ(1− z) =
π

sin(πz)
(see Lecture 32, §32.5).

Problem 7. Prove that, for every n ∈ Z≥0, we have Res
z=−n

(Γ(z)) =
(−1)n

n!
.

Problem 8. Consider the function (sometimes called Gauss’ Psi-function)

Ψ(z) =
Γ′(z)

Γ(z)

(a) Verify the following formula, using Weierstrass’ formula for the Gamma func-
tion:

Ψ(z) = −γ − 1

z
−
∞∑
n=1

(
1

z + n
− 1

n

)
.

(b) Use (a) to prove that Ψ(z + 1)−Ψ(z) =
1

z
. Deduce that Γ(z + 1) = zΓ(z).

This proves that Weierstrass’ formula also solves F (z+ 1) = zF (z). Unlike the
proof in the notes, this proof avoids the use of Euler’s integral.

(c) Prove that Ψ(z)−Ψ(1− z) = −π cot(πz).

Problem 9. Let n ∈ Z≥1. Prove that Γ′(n) = (n− 1)!

(
−γ +

n−1∑
k=1

1

k

)
.

(Hint: use Problem 8 (a).)

Problem 10. Use Ψ(z) from Problem 8 to find a function F (z) such that:

F (z + 1) = F (z)− 1

(z − 2)2
.
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Problem 10∗. Let P (z), Q(z) be two polynomials. Obtain a method to solve the

equation: F (z + 1)− F (z) =
P (z)

Q(z)
.

Problem 11. Use Γ(z) to solve the following equation:

F (z + 1) =
z2 − 2z

(z + i)3
F (z) .

Problem 11∗. Let P (z), Q(z) be two polynomials. Obtain a solution of

F (z + 1) =
P (z)

Q(z)
F (z).

Bonus 1. Let y ∈ R6=0. Prove that

|Γ (iy)| =

√
2π

y(eπy − e−πy)

(Hint: use the expansion of
sin(z)

z
from Lecture 29, page 1, and the fact that sin(iy) =

i(ey − e−y)/2.)

Bonus 2.1 Let f(t) be a continuous function of one real variable t. Let T be the
triangular region in R2, given by:

T = {(x, y) : x ≤ 0, y ≤ 0 and x+ y ≤ 1}
Prove that, for any two a, b ∈ R>0, we have:∫∫

T

f(x+ y)xa−1yb−1 dxdy =
Γ(a)Γ(b)

Γ(a+ b)

∫ 1

0

f(t)ta+b−1 dt

Hint: (1) Write this integral as:∫ 1

0

(∫ 1−x

0

f(x+ y)xa−1yb−1dy

)
dx .

(2) Perform the change of variables: y = x(1− v)/v.
(3) Flip the order of integration.
(4) Change variables again: vt = x.
(5) Use the result from Lecture 31, §31.6.

1This fascinating computation is due to Dirichlet, around 1829.


