
COMPLEX ANALYSIS: OPTIONAL READING A

(A.0) What is in these notes.– These notes contain proofs of some of the well–known
facts from real analysis, that we have used in our course.

(1) Cauchy’s criterion for existence of the limit of a sequence of numbers (mentioned in
Lecture 21, page 3) is proved below in §A.4. This proof uses Bolzano–Weierstrass
theorem §A.2.

(2) A descending chain of closed, bounded intervals, whose lengths approach 0, intersect
at a unique point §A.5. This fact was used in our proof of Cauchy’s theorem for
rectangles: Lecture 15, page 4.

(3) A continuous function on a closed, bounded set always attains its maximum and
minimum values: §A.6.

(4) We claimed in Lecture 13, page 8, that if Ω ⊂ C is an open and connected set, then
any two points can be connected by a zig-zag path. The proof uses Heine–Borel
theorem given in §A.7 below.

Proof. Let α, β ∈ Ω. As Ω is connected we can find a continuous γ : [a, b] → Ω
such that γ(a) = α and γ(b) = β. For every point γ(t) ∈ Ω we can find an open disc
around γ(t) of radius r(t) > 0 which is still inside Ω: D(γ(t); r(t)) ⊂ Ω (since Ω is
open). Take ε(t) > 0 be such that γ maps the open interval (t− ε(t), t+ ε(t)) inside
this open disc D(γ(t), r(t)) (this can be done, since γ is continuous).
Now we have covered [a, b] by open intervals {It = (t − ε(t), t + ε(t))}t∈[a,b]. By
Theorem A.7, it is possible to choose a finite subcollection which also covers [a, b].
That is, finitely many of these discs suffice. Within each disc, it is possible to replace
γ by a zig-zag (see the picture at the end of page 8 of Lecture 13).

�

(A.1) Completeness axiom of real line.– Recall that R denotes the set of real numbers.
The following property of R is to be taken as an axiom (called the completeness axiom of
real line):

Given any subset A ⊂ R which is bounded above (that is, there exists some number c ∈ R
such that a < c for every a ∈ A), the supremum (also called the least upper bound) of A
exists. Often denoted by sup(A), this is the unique real number such that:

• a ≤ sup(A) for every a ∈ A.
• If c ∈ R is such that a ≤ c for every a ∈ A, then sup(A) ≤ c.

Note that sup(A) has to be unique (if there are two such numbers, say s1 and s2, then
s1 ≤ s2 by the second property applied to s1; and s2 ≤ s1 by the same property applied to s2).
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Similarly, for a subset B ⊂ R which is bounded below we have the existence and unique-
ness of inf(B). Namely: inf(B) = − sup(−B).

Notation for intervals. For a < b, we have: (i) the open interval (a, b) = {x ∈ R : a < x <
b}; (ii) the closed interval [a, b] = {x ∈ R : a ≤ x ≤ b}; (iii) [a, b) = {x ∈ R : a ≤ x < b},
and so on.

(A.2) Bolzano–Weierstrass theorem.– 1 Consider a sequence {xn}∞n=0 of real numbers.

Definition. A number c ∈ R is called a cluster point of {xn}∞n=0 if for every ε > 0, there are
infinitely many x′ns in (c− ε, c+ ε).

Theorem. Let {xn}∞n=0 be a sequence of real numbers which is bounded (that is, there exist
real numbers L < R so that xn ∈ [L,R] for every n ≥ 0). Then the sequence has at least one
cluster point.

Proof. For each k ∈ Z≥0 consider the subsequence {xn}∞n=k. It has a least upper bound by
the completeness axiom. Let `k = sup({xk, xk+1, . . .}). This is clearly a decreasing sequence
of numbers, all bigger than L:

`0 ≥ `1 ≥ `2 ≥ `3 ≥ · · · ≥ L.

Take G = inf({`0, `1, `2, . . .}). We are going to prove that G is a cluster point of {xn}∞n=0.
(see next paragraph: this G is the limit-supremum of {xn}∞n=0.)

So, let ε > 0 be given. As G is the infimum of {`k}∞k=0, and G+ε > G, there must be some
N so that `N < G + ε (if all `′ks are larger than G + ε, then G + ε has to be smaller than,
or equal to the infimum). Since `N = sup({xN , xN+1, . . .}), we conclude that xn < G+ ε for
every n ≥ N .

Now we show that infinitely many of x′ns are larger than G − ε. We will prove it by
contradiction. So, assume that only finitely many x′ns are larger than G − ε. That means,
there is some positive integer M , so that xn < G− ε for every n ≥M . But that means:

`M = sup({xM , xM+1, . . .}) ≤ G− ε < G ≤ `M .

This is a contradiction, and we are done.
�

(A.3) lim and lim.– The definition of limit-supremum was given in Lecture 21, §21.2, page
3. We recall it below.

Definition. Given a sequence {xn}∞n=0 of real number, we say G = lim
n→∞

xn (in words: G is

the limit-supremum, or lim-sup, of the sequence {xn}) if it has the following property: for
every ε > 0, we have:

1This theorem, often attributed to Weierstrass, was proved by Bolzano in 1817. Bernard Bolzano (1781-
1848) wrote it as a lemma required in his proof of the intermediate value theorem.
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• There are infinitely many x′ns in the interval (G− ε,G+ ε).

• Almost all of x′ns are less than G + ε. Meaning, there is some number N > 0, such
that xn < G+ ε for every n ≥ N .

In the proof of Bolzano–Weierstrass theorem given above, we constructed the limit-supremum
of a bounded sequence of real numbers:

lim
n→∞

xn = inf
k

(sup({xk, xk+1, . . .}))

Similarly, limit-infimum, or lim-inf, can be defined as follows. L = lim
n→∞

xn means that for

every ε > 0, we have:

• There are infinitely many x′ns in the interval (L− ε, L+ ε).

• Almost all of x′ns are greater than L−ε. That is to say, there is some number N > 0,
such that xn > L− ε for every n ≥ N .

Lim-inf is constructed for a bounded sequence by flipping the order of inf and sup in the
construction of lim-sup above. Or: lim

n→∞
xn = − lim

n→∞
(−xn).

Example. Consider the sequence {1,−1, 1,−1, . . .}. It does not have a limit (as defined
below) but does have limit-supremum (= 1) and limit-infimum (= −1).

For a sequence which does admit a limit, limit-supremum and limit-infimum are equal (try

to prove it by yourself, or see the proof of Theorem A.4 below). For instance, xn =
1

n
has a

limit (= 0) which is both its lim-sup and its lim-inf.

(A.4) Limit of a sequence and Cauchy’s criterion.– Recall that we say

` = lim
n→∞

xn

if for every ε > 0, almost all of x′ns are in the interval (`− ε, `+ ε). That is to say, there is
some number N > 0 such that |xn − `| < ε for every n ≥ N . If a sequence admits a limit,
then the limit is necessarily unique.

To see this, assume `1 and `2 are two limits of the same sequence {xn}, and `1 6= `2. Let
d = |`1− `2| > 0 and pick ε < d

2
. By their definitions, there are numbers N1, N2 > 0, so that

every xn with n ≥ N1 is in the interval (`1−ε, `1 +ε) and every xm with m ≥ N2 is in the in-
terval (`2−ε, `2+ε). This is a contradiction, since these two intervals have empty intersection!

The following definition was recalled in Lecture 21, §21.1, page 2, as Cauchy’s criterion
for convergence.
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Definition. A sequence {xn}∞n=0 is said to be convergent if for every ε > 0 there is a number
N > 0 so that

|xn − xm| < ε for every n,m ≥ N.

The following theorem is also due to Cauchy2, and is considered to be the most important
and fundamental theorem of analysis.

Theorem. A sequence {xn}∞n=0 has a limit (necessarily unique) if, and only if it is conver-
gent.

Proof. Let us assume ` = lim
n→∞

xn exists. Let us check that the sequence {xn} has to be

convergent. So, we are given ε > 0. By definition of the limit (applied to the number ε/2)
we obtain a number N > 0 so that

|xn − `| <
ε

2
for every n ≥ N.

Then, for every n,m ≥ N , we have:

|xn − xm| = |(xn − `)− (xm − `)| ≤ |xn − `|+ |xm − `| < ε,

which proves that {xn} meets Cauchy’s criterion of being convergent.

For the converse, let us consider a convergent sequence {xn}∞n=0. We will first check that
it is bounded. Take ε = 1 in the definition above. Thus, we have a number N > 0 so that
|xn − xm| < 1 for every n,m ≥ N . The lower and upper bound for the entire sequence can
then be taken as:

L < Min{x0, . . . , xN−1, xN − 1} and R > Max{x0, . . . , xN−1, xN + 1}.
Having established that {xn} is bounded, we apply Theorem (A.2) to obtain two cluster
points:

`1 = lim
n→∞

xn, and `2 = lim
n→∞

xn.

Now we are going to show that `1 = `2. This common value then has to be the limit of
the sequence, by the second property of lim, lim in §A.3.

The proof of `1 = `2 follows the same logic as in the proof of uniqueness of limit given
above. Namely, we argue by contradiction: if `1 6= `2, let d = |`1− `2| > 0 and take ε < d/4.
By the first property of lim and lim, for this choice of ε, there are infinitely many x′ns in
each of the interval (`1 − ε, `1 + ε) and (`2 − ε, `2 + ε). But,

a ∈ (`1 − ε, `1 + ε) and b ∈ (`2 − ε, `2 + ε) implies that |a− b| > d/2.

So, {xn} does not meet Cauchy’s criterion, if we pick ε there to be d/2. This is a contra-
diction, and we are done.

�

(A.5) Application 1. Descending chain property.– Assume that we have (bounded)
closed intervals: In = [an, bn], n ≥ 0 which form a descending chain:

I0 ⊃ I1 ⊃ I2 ⊃ · · ·
2Augustin-Louis Cauchy (1789-1857) Analyse Algébrique 1821.
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In addition, assume that lim
n→∞

length(In) = 0.

Thus, a0 ≤ a1 ≤ a2 ≤ · · · < · · · ≤ b2 ≤ b1 ≤ b0, and (bn − an)→ 0, as n→∞.

Then:
a = sup({a0, a1, a2, . . .}) ≤ b = inf({b0, b1, b2, . . .}).

Now it is easy to see that [a, b] = ∩∞n=0In. As the lengths of In are assumed to go to 0,
we conclude that a = b. Therefore, we arrive at the following descending chain property of
bounded closed intervals:

The intersection of a descending chain of bounded closed intervals, whose lengths approach
0, consists of a single element.

Remark. Some mathematicians take this property as the basic axiom of R. This property
is false for open intervals. For instance, the intersection of the following descending chain of
bounded open intervals is empty:

(0, 1) ⊃ (0, 1/2) ⊃ (0, 1/3) ⊃ · · ·

(A.6) Application 2. Absolute max/min.– We can now prove that every continuous
function on a closed, bounded interval attains its maximum and minimum value.

Theorem. Let f : [a, b]→ R be a continuous function. Then, there exists M ∈ R such that
f(x) ≤M for every x ∈ [a, b]. In addition, there exists c ∈ [a, b] such that f(c) = M .

Similarly, there exists m ∈ R such that f(x) ≥ m for every x ∈ [a, b]. Additionally,
m = f(d) for some d ∈ [a, b].

Proof. First of all, we have to show that the image of f is a bounded set. Namely, let
A = {f(x) : x ∈ [a, b]}. Let us prove that there is some number R ∈ R such that y < R for
every y ∈ A. The same logic works to show the existence of some L ∈ R such that L < y
for every y ∈ A.

The proof is by contradiction (again). Assume there is no upper bound to the set A. Then
for every positive integer n ∈ Z≥0 there must be some xn ∈ [a, b] so that f(xn) > n. This
way, we obtain a sequence of numbers {xn}∞n=0 ⊂ [a, b]. By Bolzano–Weierstrass theorem
A.2, this sequence has a cluster point, let us call that cluster point x∗. Take y∗ = f(x∗) ∈ R.
As f was assumed to be continuous, for ε = 1, there must be some δ > 0 that makes the
following statement true:

For every x such that 0 < |x− x∗| < δ, we have |f(x)− f(x∗)| < 1.

Meaning, the interval (x∗− δ, x∗+ δ), under our function f , lands inside (y∗−1, y∗+ 1). But
x∗ was a cluster point of {xn}, so the interval (x∗− δ, x∗+ δ) contains infinitely many of x′ns.
This is a contradiction, since f(xn) > n has to eventually leave the interval (y∗ − 1, y∗ + 1).

Having established that A ⊂ R is bounded, let M = sup(A) and m = inf(A). It remains
to show that f(c) = M for some c ∈ [a, b] (the proof for m is verbatim).
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For each integer n ≥ 1, M − 1/n is strictly smaller than M . By property of sup there

must be some cn ∈ [a, b] so that M − 1

n
< f(cn) ≤ M . Again, we have found a sequence

{cn}∞n=1 ⊂ [a, b] which must have a cluster point, by Theorem A.2. Let c be a cluster point
of this sequence. Then, by continuity of f , f(c) = M .

�

(A.7) Heine–Borel theorem.– 3 Let [a, b] ⊂ R be a closed, bounded interval. Assume
that there is a collection of open intervals {I`}`∈Λ (here Λ is any set used to index I ′`s) such
that

[a, b] ⊂
⋃
`∈Λ

I`.

Theorem. There exists a finite subset {`1, `2, . . . , `n} ⊂ Λ such that

[a, b] ⊂ I`1 ∪ I`2 ∪ · · · ∪ I`n .

Remark. This theorem is often stated as: every open cover of a closed, bounded interval
has a finite subcover.

In general topological space X, a subset K ⊂ X is said to be compact if every open cover
of K has a finite subcover. This generalization is clearly inspired by Heine–Borel theorem.
Thus, for X = R (or C), compact = closed and bounded.

Proof. Let S = {t ∈ [a, b] : [a, t] is contained in a finite union of intervals from {I`}`∈Λ}.

This set is non–empty, since a ∈ S. It is also an interval: meaning, if t ∈ S and s < t,
then s ∈ S. Therefore, it must be of the form S = [a, T ]. We claim that T = b, which
will prove the theorem. So, (again arguing by contradiction) let us assume that T < b. By
construction of S, we can cover [a, T ] by finitely many intervals from the given collection
{I`}`∈Λ:

[a, T ] ⊂ Ik1 ∪ Ik2 ∪ · · · ∪ Ikm .
Also, T ∈ [a, b] ⊂

⋃
`∈Λ

I`, meaning there is an open interval, say I`0 containing T . But that

means (by definition of open intervals) that (T − ε, T + ε) ⊂ I`0 for some ε > 0. Therefore,
we can cover [a, T + ε/2] by finitely many intervals from the given collection {I`}`∈Λ:

[a, T + ε/2] ⊂ Ik1 ∪ Ik2 ∪ · · · ∪ Ikm ∪ I`0 .
This contradicts the fact that S = [a, T ]. Hence, T = b and the theorem is proved. �

3Heinrich Eduard Heine (1821-1881). Émile Borel (1871-1956). The proof given here is due to Henri
Lebasgue (1875-1941)


