COMPLEX ANALYSIS: OPTIONAL READING A

(A.0) What is in these notes. – These notes contain proofs of some of the well–known facts from real analysis, that we have used in our course.

- (1) Cauchy's criterion for existence of the limit of a sequence of numbers (mentioned in Lecture 21, page 3) is proved below in §A.4. This proof uses Bolzano–Weierstrass theorem §A.2.
- (2) A descending chain of closed, bounded intervals, whose lengths approach 0, intersect at a unique point §A.5. This fact was used in our proof of Cauchy's theorem for rectangles: Lecture 15, page 4.
- (3) A continuous function on a closed, bounded set always attains its maximum and minimum values: §A.6.
- (4) We claimed in Lecture 13, page 8, that if $\Omega \subset \mathbb{C}$ is an open and connected set, then any two points can be connected by a zig-zag path. The proof uses Heine–Borel theorem given in §A.7 below.

PROOF. Let $\alpha, \beta \in \Omega$. As Ω is connected we can find a continuous $\gamma : [a, b] \to \Omega$ such that $\gamma(a) = \alpha$ and $\gamma(b) = \beta$. For every point $\gamma(t) \in \Omega$ we can find an open disc around $\gamma(t)$ of radius r(t) > 0 which is still inside Ω : $D(\gamma(t); r(t)) \subset \Omega$ (since Ω is open). Take $\varepsilon(t) > 0$ be such that γ maps the open interval $(t - \varepsilon(t), t + \varepsilon(t))$ inside this open disc $D(\gamma(t), r(t))$ (this can be done, since γ is continuous).

Now we have covered [a, b] by open intervals $\{I_t = (t - \varepsilon(t), t + \varepsilon(t))\}_{t \in [a,b]}$. By Theorem A.7, it is possible to choose a finite subcollection which also covers [a, b]. That is, finitely many of these discs suffice. Within each disc, it is possible to replace γ by a zig-zag (see the picture at the end of page 8 of Lecture 13).

(A.1) Completeness axiom of real line. – Recall that \mathbb{R} denotes the set of real numbers. The following property of \mathbb{R} is to be taken as an axiom (called the completeness axiom of real line):

Given any subset $A \subset \mathbb{R}$ which is bounded above (that is, there exists some number $c \in \mathbb{R}$ such that a < c for every $a \in A$), the *supremum* (also called the *least upper bound*) of A exists. Often denoted by $\sup(A)$, this is the unique real number such that:

- $a \leq \sup(A)$ for every $a \in A$.
- If $c \in \mathbb{R}$ is such that $a \leq c$ for every $a \in A$, then $\sup(A) \leq c$.

Note that $\sup(A)$ has to be unique (if there are two such numbers, say s_1 and s_2 , then $s_1 \leq s_2$ by the second property applied to s_1 ; and $s_2 \leq s_1$ by the same property applied to s_2).

APPENDIX A

Similarly, for a subset $B \subset \mathbb{R}$ which is bounded below we have the existence and uniqueness of $\inf(B)$. Namely: $\inf(B) = -\sup(-B)$.

Notation for intervals. For a < b, we have: (i) the open interval $(a, b) = \{x \in \mathbb{R} : a < x < b\}$; (ii) the closed interval $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$; (iii) $[a, b) = \{x \in \mathbb{R} : a \le x < b\}$, and so on.

(A.2) Bolzano–Weierstrass theorem.– ¹ Consider a sequence $\{x_n\}_{n=0}^{\infty}$ of real numbers.

Definition. A number $c \in \mathbb{R}$ is called a *cluster point* of $\{x_n\}_{n=0}^{\infty}$ if for every $\varepsilon > 0$, there are infinitely many $x'_n s$ in $(c - \varepsilon, c + \varepsilon)$.

Theorem. Let $\{x_n\}_{n=0}^{\infty}$ be a sequence of real numbers which is bounded (that is, there exist real numbers L < R so that $x_n \in [L, R]$ for every $n \ge 0$). Then the sequence has at least one cluster point.

PROOF. For each $k \in \mathbb{Z}_{\geq 0}$ consider the subsequence $\{x_n\}_{n=k}^{\infty}$. It has a least upper bound by the completeness axiom. Let $\ell_k = \sup(\{x_k, x_{k+1}, \ldots\})$. This is clearly a decreasing sequence of numbers, all bigger than L:

$$\ell_0 \ge \ell_1 \ge \ell_2 \ge \ell_3 \ge \cdots \ge L.$$

Take $G = \inf(\{\ell_0, \ell_1, \ell_2, \ldots\})$. We are going to prove that G is a cluster point of $\{x_n\}_{n=0}^{\infty}$. (see next paragraph: this G is the limit-supremum of $\{x_n\}_{n=0}^{\infty}$.)

So, let $\varepsilon > 0$ be given. As G is the infimum of $\{\ell_k\}_{k=0}^{\infty}$, and $G + \varepsilon > G$, there must be some N so that $\ell_N < G + \varepsilon$ (if all $\ell'_k s$ are larger than $G + \varepsilon$, then $G + \varepsilon$ has to be smaller than, or equal to the infimum). Since $\ell_N = \sup(\{x_N, x_{N+1}, \ldots\})$, we conclude that $x_n < G + \varepsilon$ for every $n \ge N$.

Now we show that infinitely many of $x'_n s$ are larger than $G - \varepsilon$. We will prove it by contradiction. So, assume that only finitely many $x'_n s$ are larger than $G - \varepsilon$. That means, there is some positive integer M, so that $x_n < G - \varepsilon$ for every $n \ge M$. But that means:

$$\ell_M = \sup(\{x_M, x_{M+1}, \ldots\}) \le G - \varepsilon < G \le \ell_M$$

This is a contradiction, and we are done.

(A.3) lim and <u>lim</u>.— The definition of *limit-supremum* was given in Lecture 21, §21.2, page 3. We recall it below.

Definition. Given a sequence $\{x_n\}_{n=0}^{\infty}$ of real number, we say $G = \overline{\lim_{n \to \infty}} x_n$ (in words: G is the limit-supremum, or lim-sup, of the sequence $\{x_n\}$) if it has the following property: for every $\varepsilon > 0$, we have:

¹This theorem, often attributed to Weierstrass, was proved by Bolzano in 1817. Bernard Bolzano (1781-1848) wrote it as a lemma required in his proof of the intermediate value theorem.

APPENDIX A

- There are infinitely many $x'_n s$ in the interval $(G \varepsilon, G + \varepsilon)$.
- Almost all of $x'_n s$ are less than $G + \varepsilon$. Meaning, there is some number N > 0, such that $x_n < G + \varepsilon$ for every $n \ge N$.

In the proof of Bolzano–Weierstrass theorem given above, we constructed the limit-supremum of a bounded sequence of real numbers:

$$\overline{\lim_{n \to \infty}} x_n = \inf_k (\sup(\{x_k, x_{k+1}, \ldots\}))$$

Similarly, limit-infimum, or lim-inf, can be defined as follows. $L = \lim_{n \to \infty} x_n$ means that for every $\varepsilon > 0$, we have:

- There are infinitely many $x'_n s$ in the interval $(L \varepsilon, L + \varepsilon)$.
- Almost all of $x'_n s$ are greater than $L \varepsilon$. That is to say, there is some number N > 0, such that $x_n > L \varepsilon$ for every $n \ge N$.

Lim-inf is constructed for a bounded sequence by flipping the order of inf and sup in the construction of lim-sup above. Or: $\lim_{n\to\infty} x_n = -\overline{\lim_{n\to\infty}}(-x_n)$.

Example. Consider the sequence $\{1, -1, 1, -1, \ldots\}$. It does not have a limit (as defined below) but does have limit-supremum (= 1) and limit-infimum (= -1).

For a sequence which does admit a limit, limit-supremum and limit-infimum are equal (try to prove it by yourself, or see the proof of Theorem A.4 below). For instance, $x_n = \frac{1}{n}$ has a limit (= 0) which is both its lim-sup and its lim-inf.

(A.4) Limit of a sequence and Cauchy's criterion. – Recall that we say

$$\ell = \lim_{n \to \infty} x_n$$

if for every $\varepsilon > 0$, almost all of $x'_n s$ are in the interval $(\ell - \varepsilon, \ell + \varepsilon)$. That is to say, there is some number N > 0 such that $|x_n - \ell| < \varepsilon$ for every $n \ge N$. If a sequence admits a limit, then the limit is necessarily unique.

To see this, assume ℓ_1 and ℓ_2 are two limits of the same sequence $\{x_n\}$, and $\ell_1 \neq \ell_2$. Let $d = |\ell_1 - \ell_2| > 0$ and pick $\varepsilon < \frac{d}{2}$. By their definitions, there are numbers $N_1, N_2 > 0$, so that every x_n with $n \ge N_1$ is in the interval $(\ell_1 - \varepsilon, \ell_1 + \varepsilon)$ and every x_m with $m \ge N_2$ is in the interval $(\ell_2 - \varepsilon, \ell_2 + \varepsilon)$. This is a contradiction, since these two intervals have empty intersection!

The following definition was recalled in Lecture 21, §21.1, page 2, as *Cauchy's criterion* for convergence.

Definition. A sequence $\{x_n\}_{n=0}^{\infty}$ is said to be *convergent* if for every $\varepsilon > 0$ there is a number N > 0 so that

$$|x_n - x_m| < \varepsilon$$
 for every $n, m \ge N$.

The following theorem is also due to Cauchy², and is considered to be the most important and fundamental theorem of analysis.

Theorem. A sequence $\{x_n\}_{n=0}^{\infty}$ has a limit (necessarily unique) if, and only if it is convergent.

PROOF. Let us assume $\ell = \lim_{n \to \infty} x_n$ exists. Let us check that the sequence $\{x_n\}$ has to be convergent. So, we are given $\varepsilon > 0$. By definition of the limit (applied to the number $\varepsilon/2$) we obtain a number N > 0 so that

$$|x_n - \ell| < \frac{\varepsilon}{2}$$
 for every $n \ge N$.

Then, for every $n, m \ge N$, we have:

$$|x_n - x_m| = |(x_n - \ell) - (x_m - \ell)| \le |x_n - \ell| + |x_m - \ell| < \varepsilon,$$

which proves that $\{x_n\}$ meets Cauchy's criterion of being convergent.

For the converse, let us consider a convergent sequence $\{x_n\}_{n=0}^{\infty}$. We will first check that it is bounded. Take $\varepsilon = 1$ in the definition above. Thus, we have a number N > 0 so that $|x_n - x_m| < 1$ for every $n, m \ge N$. The lower and upper bound for the entire sequence can then be taken as:

 $L < Min\{x_0, \dots, x_{N-1}, x_N - 1\}$ and $R > Max\{x_0, \dots, x_{N-1}, x_N + 1\}.$

Having established that $\{x_n\}$ is bounded, we apply Theorem (A.2) to obtain two cluster points:

$$\ell_1 = \lim_{n \to \infty} x_n$$
, and $\ell_2 = \overline{\lim_{n \to \infty} x_n}$.

Now we are going to show that $\ell_1 = \ell_2$. This common value then has to be the limit of the sequence, by the second property of <u>lim</u>, <u>lim</u> in §A.3.

The proof of $\ell_1 = \ell_2$ follows the same logic as in the proof of uniqueness of limit given above. Namely, we argue by contradiction: if $\ell_1 \neq \ell_2$, let $d = |\ell_1 - \ell_2| > 0$ and take $\varepsilon < d/4$. By the first property of $\underline{\lim}$ and $\overline{\lim}$, for this choice of ε , there are infinitely many $x'_n s$ in each of the interval $(\ell_1 - \varepsilon, \ell_1 + \varepsilon)$ and $(\ell_2 - \varepsilon, \ell_2 + \varepsilon)$. But,

$$a \in (\ell_1 - \varepsilon, \ell_1 + \varepsilon)$$
 and $b \in (\ell_2 - \varepsilon, \ell_2 + \varepsilon)$ implies that $|a - b| > d/2$.

So, $\{x_n\}$ does not meet Cauchy's criterion, if we pick ε there to be d/2. This is a contradiction, and we are done.

(A.5) Application 1. Descending chain property. Assume that we have (bounded) closed intervals: $I_n = [a_n, b_n], n \ge 0$ which form a descending chain:

$$I_0 \supset I_1 \supset I_2 \supset \cdots$$

²Augustin-Louis Cauchy (1789-1857) Analyse Algébrique 1821.

In addition, assume that $\lim_{n \to \infty} \text{length}(I_n) = 0.$

Thus, $a_0 \leq a_1 \leq a_2 \leq \cdots \leq \cdots \leq b_2 \leq b_1 \leq b_0$, and $(b_n - a_n) \to 0$, as $n \to \infty$.

Then:

$$a = \sup(\{a_0, a_1, a_2, \ldots\}) \le b = \inf(\{b_0, b_1, b_2, \ldots\}).$$

Now it is easy to see that $[a,b] = \bigcap_{n=0}^{\infty} I_n$. As the lengths of I_n are assumed to go to 0, we conclude that a = b. Therefore, we arrive at the following descending chain property of bounded closed intervals:

The intersection of a descending chain of bounded closed intervals, whose lengths approach 0, consists of a single element.

Remark. Some mathematicians take this property as the basic axiom of \mathbb{R} . This property is false for open intervals. For instance, the intersection of the following descending chain of bounded open intervals is empty:

$$(0,1) \supset (0,1/2) \supset (0,1/3) \supset \cdots$$

(A.6) Application 2. Absolute max/min.– We can now prove that every continuous function on a closed, bounded interval attains its maximum and minimum value.

Theorem. Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Then, there exists $M \in \mathbb{R}$ such that $f(x) \leq M$ for every $x \in [a, b]$. In addition, there exists $c \in [a, b]$ such that f(c) = M.

Similarly, there exists $m \in \mathbb{R}$ such that $f(x) \ge m$ for every $x \in [a, b]$. Additionally, m = f(d) for some $d \in [a, b]$.

PROOF. First of all, we have to show that the image of f is a bounded set. Namely, let $A = \{f(x) : x \in [a, b]\}$. Let us prove that there is some number $R \in \mathbb{R}$ such that y < R for every $y \in A$. The same logic works to show the existence of some $L \in \mathbb{R}$ such that L < y for every $y \in A$.

The proof is by contradiction (again). Assume there is no upper bound to the set A. Then for every positive integer $n \in \mathbb{Z}_{\geq 0}$ there must be some $x_n \in [a, b]$ so that $f(x_n) > n$. This way, we obtain a sequence of numbers $\{x_n\}_{n=0}^{\infty} \subset [a, b]$. By Bolzano–Weierstrass theorem A.2, this sequence has a cluster point, let us call that cluster point x^* . Take $y^* = f(x^*) \in \mathbb{R}$. As f was assumed to be continuous, for $\varepsilon = 1$, there must be some $\delta > 0$ that makes the following statement true:

For every x such that
$$0 < |x - x^*| < \delta$$
, we have $|f(x) - f(x^*)| < 1$

Meaning, the interval $(x^* - \delta, x^* + \delta)$, under our function f, lands inside $(y^* - 1, y^* + 1)$. But x^* was a cluster point of $\{x_n\}$, so the interval $(x^* - \delta, x^* + \delta)$ contains infinitely many of $x'_n s$. This is a contradiction, since $f(x_n) > n$ has to eventually leave the interval $(y^* - 1, y^* + 1)$.

Having established that $A \subset \mathbb{R}$ is bounded, let $M = \sup(A)$ and $m = \inf(A)$. It remains to show that f(c) = M for some $c \in [a, b]$ (the proof for m is verbatim).

For each integer $n \ge 1$, M - 1/n is strictly smaller than M. By property of sup there must be some $c_n \in [a, b]$ so that $M - \frac{1}{n} < f(c_n) \le M$. Again, we have found a sequence $\{c_n\}_{n=1}^{\infty} \subset [a, b]$ which must have a cluster point, by Theorem A.2. Let c be a cluster point of this sequence. Then, by continuity of f, f(c) = M.

(A.7) Heine–Borel theorem.–³ Let $[a, b] \subset \mathbb{R}$ be a closed, bounded interval. Assume that there is a collection of open intervals $\{I_\ell\}_{\ell \in \Lambda}$ (here Λ is any set used to index $I'_{\ell}s$) such that

$$[a,b] \subset \bigcup_{\ell \in \Lambda} I_{\ell}.$$

Theorem. There exists a finite subset $\{\ell_1, \ell_2, \ldots, \ell_n\} \subset \Lambda$ such that

$$[a,b] \subset I_{\ell_1} \cup I_{\ell_2} \cup \cdots \cup I_{\ell_n}.$$

Remark. This theorem is often stated as: every open cover of a closed, bounded interval has a finite subcover.

In general topological space X, a subset $K \subset X$ is said to be *compact* if every open cover of K has a finite subcover. This generalization is clearly inspired by Heine–Borel theorem. Thus, for $X = \mathbb{R}$ (or \mathbb{C}), *compact* = closed and bounded.

PROOF. Let $S = \{t \in [a, b] : [a, t] \text{ is contained in a finite union of intervals from } \{I_\ell\}_{\ell \in \Lambda}\}.$

This set is non-empty, since $a \in S$. It is also an interval: meaning, if $t \in S$ and s < t, then $s \in S$. Therefore, it must be of the form S = [a, T]. We claim that T = b, which will prove the theorem. So, (again arguing by contradiction) let us assume that T < b. By construction of S, we can cover [a, T] by finitely many intervals from the given collection $\{I_\ell\}_{\ell \in \Lambda}$:

$$[a,T] \subset I_{k_1} \cup I_{k_2} \cup \cdots \cup I_{k_m}.$$

Also, $T \in [a, b] \subset \bigcup_{\ell \in \Lambda} I_{\ell}$, meaning there is an open interval, say I_{ℓ_0} containing T. But that

means (by definition of open intervals) that $(T - \varepsilon, T + \varepsilon) \subset I_{\ell_0}$ for some $\varepsilon > 0$. Therefore, we can cover $[a, T + \varepsilon/2]$ by finitely many intervals from the given collection $\{I_\ell\}_{\ell \in \Lambda}$:

$$[a, T + \varepsilon/2] \subset I_{k_1} \cup I_{k_2} \cup \cdots \cup I_{k_m} \cup I_{\ell_0}.$$

This contradicts the fact that S = [a, T]. Hence, T = b and the theorem is proved.

 $^{^{3}}$ Heinrich Eduard Heine (1821-1881). Émile Borel (1871-1956). The proof given here is due to Henri Lebasgue (1875-1941)