
COMPLEX ANALYSIS: LECTURE 22

(22.0) What is in this lecture.–

(1) Definition of uniform convergence of a sequence of functions (§22.1), and a series of
functions (§22.2). Why is it relevant - Weierstrass’ theorem (§22.6).

(2) Definition of a power series and its radius of convergence - Abel’s theorem (§22.3).
(3) How to compute the radius of convergence of a given power series (§22.4) and exam-

ples (§22.5).
(4) Proofs (optional) of Weierstrass’ theorem (§22.7) and Abel’s theorem (§22.8).

(22.1) Uniform convergence.– Let Ω ⊂ C be an open set. Let fn : Ω→ C (n = 0, 1, 2, . . .)
be a sequence of functions. Recall (Lecture 21, page 7) that when we say {fn}∞n=0 converges
pointwise, we mean that for every z0 ∈ Ω, the resulting sequence of numbers {fn(z0)}∞n=0 is

convergent. Its limit defines a new function f for us via the rule: f(z0) = lim
n→∞

fn(z0) . In

Lecture 21, page 8, we saw that pointwise convergence does not respect the desirable prop-
erties (like continuity) of functions. For that we need the notion of uniform convergence.

Definition. We say that {fn}∞n=0 converges uniformly, if for every compact set K ⊂ Ω, and
ε > 0, we can find an N > 0 such that the following statement holds true:

for every n,m ≥ N and z ∈ K, we have |fn(z)− fm(z)| < ε.

Remarks. (1) Recall that a subset K ⊂ C is said to be compact, if it is both closed and
bounded (see Lecture 3, page 8).

(2) A singleton {z0} is clearly compact. Thus, uniform convergence implies pointwise con-

vergence, and we obtain a new function f : Ω→ C, via the rule: f(z0) = lim
n→∞

fn(z0) .

We will often write in words fn converges uniformly to f , as n →∞, or in symbols

lim
n→∞

fn = f uniformly.

(3) In the definition above, the number N > 0 will depend on ε and K. The point is
that it works for all z0 ∈ K at the same time. This is where the notion of uniform
convergence differs from that of pointwise convergence.

(22.2) Series of functions.– As we saw in Lecture 21 (§21.3, page 4) the notions of conver-
gence (pointwise, or uniform) for a series of functions are the same as those for the associated
sequence of finite sums. This means the following.
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2 LECTURE 22

Given an infinite series u0(z) +u1(z) + · · · of functions, abbreviated as
∞∑
k=0

uk(z), consider

the following sequence of functions:

f0(z) = u0(z), f1(z) = u0(z) + u1(z), . . . , fn(z) =
n∑
k=0

uk(z) , . . .

Then
∞∑
k=0

uk(z) is uniformly convergent if the sequence {fn(z)}∞n=0 is.

To spell it out again: in order to ensure that
∞∑
k=0

uk(z) is uniformly convergent, we need

to prove the following. Given any compact set K contained in Ω, and any ε > 0, there exists
N > 0, for which the following statement holds true:

for every n ≥ N, p ≥ 0 and z ∈ K, we have

∣∣∣∣∣
n+p∑
k=n

uk(z)

∣∣∣∣∣ < ε.

(22.3) Power series and their radius of convergence.– A power series is an infinite

series of the form
∞∑
k=0

akz
k, where a0, a1, . . . ∈ C. That is, in the notation of the previous

paragraph, each uk(z) = akz
k. For instance,

∞∑
k=0

kzk = 0+z+2z2+3z3+· · · is a power series.

The following theorem is due to Abel 1.

Theorem. Let
∞∑
k=0

akz
k be a power series. Then, there exists R ∈ R≥0 (R could be infinite)

such that:

(1) For every z ∈ C such that |z| < R, the series (of numbers)
∞∑
k=0

akz
k converges.

(2) For every z ∈ C such that |z| > R, the series
∞∑
k=0

akz
k diverges.

Assume that R 6= 0. Then the convergence of
∞∑
k=0

akz
k on the open disc D(0;R) = {z ∈

C : |z| < R} is uniform.

The non–negative real number R appearing in the statement of the theorem above is called

the radius of convergence of the power series
∞∑
k=0

akz
k.

The proof of this theorem is given in (22.8) below. It is optional, though it contains an
important idea on how to find the radius of convergence, which I will highlight in the next

1Neils Henrik Abel (1802-1829)
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paragraph.

(22.4) How to find the radius of convergence.– The radius of convergence of a power

series
∞∑
k=0

akz
k is the unique non–negative real number R such that: for every non–negative,

real number r < R, there exists some constant M (possibly depending on r) for which
|an|rn < M for all n ≥ 0.

Example. Let us consider the power series 1 + z + z2 + z3 + . . . =
∞∑
k=0

zk. Its radius of

convergence is 1. If 0 ≤ r < 1, then with M = 1, we can be sure that rn < M , for every
n ≥ 0. On the other hand, if r > 1, no such M could possibly exist as, in this case, rn →∞
as n→∞.

d’Alembert’s Ratio test to compute radius of convergence. One standard trick to compute

the radius of convergence of
∞∑
k=0

akz
k is to compute the limit lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣. Let us assume this

limit exists, and call it ` (could be 0 or ∞). Then R =
1

`
(R =∞ if ` = 0, R = 0 if ` =∞).

(22.5) More examples.– Let us apply the ratio test to compute the radius of convergence
of some useful power series.

(1)
∞∑
k=0

zk. Radius of convergence = 1 (see the example of the previous paragraph).

(2)
∞∑
k=0

zk

k!
. In this case, the coefficients of the power series are ak =

1

k!
, and

an+1

an
=

n!

(n+ 1)!
=

1

n+ 1
→ 0 as n→∞.

Thus, the radius of convergence R =∞.

(3)
∞∑
k=0

kzk.
an+1

an
=
n+ 1

n
= 1 +

1

n
→ 1 as n→∞. Hence, R = 1.

(4)
∞∑
k=0

k!zk.
an+1

an
=

(n+ 1)!

n!
= n+ 1→∞ as n→∞. Hence, R = 0.

(22.6) Weierstrass’ theorem on uniform convergence.– The following theorem was
obtained by Weierstrass in his famous Berlin lectures around 1878.

Theorem. Let Ω ⊂ C be an open set, and let {fn : Ω → C}∞n=0 be a sequence of functions.
Assume {fn}∞n=0 converges uniformly, and let f : Ω→ C be the limit.
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(1) If each fn is continuous, then so is f . In this case, for every piecewise–smooth path
γ : [a, b]→ Ω, we have ∫

γ

f(z) dz = lim
n→∞

∫
γ

fn(z) dz.

(2) If each fn is holomorphic, then so if f . In this case, {f ′n}∞n=0 converges uniformly to
f ′.

The point of the this theorem is that once we have checked uniform convergence the order

of
d

dz
,

∫
γ

and lim
n→∞

can be flipped:

d

dz

(
lim
n→∞

fn(z)
)

= lim
n→∞

dfn
dz
,∫

γ

(
lim
n→∞

fn(z)
)
dz = lim

n→∞

∫
γ

fn(z) dz.

The proof of this theorem is given in the next paragraph, and is optional.

(22.7) Proof of Theorem (22.6).–2 Recall that we are given an open set Ω ⊂ C and
a sequence of functions {fn : Ω → C}∞n=0. We are assuming that this sequence converges
uniformly to f : Ω→ C.

Proof of (1). Assume that each fn is continuous. To show that f is continuous at a point
α ∈ Ω, we have to prove the following: given any ε > 0, there exists some δ > 0 for which
the following statement holds true:

0 < |z − α| < δ implies that |f(z)− f(α)| < ε.

Let us first pick a positive real number r > 0 so that the closed disc D(α; r) = {z ∈ C :
|z − α| ≤ r} is contained in our domain Ω. This is a compact set contained in Ω, so by
uniform convergence, we can find N > 0 such that:

|fn(z)− f(z)| < ε

3
for every n ≥ N and z ∈ D(α; r).

As fN(z) is continuous at α, there must exist some δ̃ > 0, that makes the following
statement true:

0 < |z − α| < δ̃ implies |fN(z)− fN(α)| < ε

3
.

Now, the δ we were looking for, can be taken as: δ < Min{δ̃, r}. With this choice,
whenever 0 < |z − α| < δ, we have:

|f(z)− f(α)| = |(f(z)− fN(z)) + (fN(z)− fN(α)) + (fN(α)− f(α))|
< |f(z)− fN(z)|+ |fN(z)− fN(α)|+ |fN(α)− f(α))|

<
ε

3
+
ε

3
+
ε

3
= ε.

Having established that the continuity of each fn implies that of f , let us now show that∫
γ
fn(z) dz →

∫
γ
f(z) dz as n→∞, where γ : [a, b]→ Ω is a piecewise smooth path.

2Optional
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Take the compact set K = {γ(t) : a ≤ t ≤ b} ⊂ Ω (this is just the image of γ inside Ω).
Let L = length(γ).

Now, let ε > 0 be given to us. We have to find N > 0 so that∣∣∣∣∫
γ

fn(z) dz −
∫
γ

f(z) dz

∣∣∣∣ < ε for every n ≥ N.

By uniform continuity (applied to the compact set K), there does exist some N > 0, for
which we have:

|fn(z)− f(z)| < ε

L
for every n ≥ N and z ∈ K.

This N works for us, by the important inequality (Lecture 12, §12.7, page 9):∣∣∣∣∫
γ

(fn(z)− f(z)) dz

∣∣∣∣ < ε

L
L = ε.

Proof of (2). Now we assume that each fn is holomorphic. We are going to prove that f is

also holomorphic. That is, for w ∈ Ω, the limit lim
h→0

f(w + h)− f(w)

h
exists. This argument

uses Cauchy’s integral formula (Lecture 16, §16.3, page 4), and the idea behind the proof of
“once differentiable always differentiable” (Lecture 17, page 4).

So, let us keep w ∈ Ω fixed. Pick r > 0 so that the closed disc D(w; r) is still in Ω and let
C be the counterclockwise circle of radius r centered at w.

C : [0, 2π]→ Ω given by C(θ) = w + reiθ .

In the calculations below, I am assuming that |h| < r.

1

h
(f(w + h)− f(w)) =

1

h
lim
n→∞

(fn(w + h)− fn(w))

=
1

h
lim
n→∞

1

2πi

∫
C

(
fn(z)

z − (w + h)
− fn(z)

z − w

)
dz =

1

2πi
lim
n→∞

∫
C

fn(z)

(z − w − h)(z − w)
dz

This is because of Cauchy’s integral formula applied to fn(z) which was assumed to be
holomorphic. Now we can flip the role of

∫
C

and limn→∞, as we have already shown it to be
legitimate in the proof of (1) above. Thus, we obtain:

1

h
(f(w + h)− f(w)) =

1

2πi

∫
C

f(z)

(z − w − h)(z − w)
dz.

Now, the limit as h→ 0, of the right–hand side exists, and is equal to
1

2πi

∫
C

f(z)

(z − w)2
dz

(see Lecture 17, page 4, where this is shown in detail). Hence, we can conclude that

f ′(w) = lim
h→0

f(w + h)− f(w)

h
exists and =

1

2πi

∫
C

f(z)

(z − w)2
dz.

The same as true for each fn by Cauchy’s integral formula, which together with the proof
of (1) above establishes that {f ′n(z)}∞n=0 converges uniformly to f ′(z).
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(22.8) Proof of Abel’s theorem (22.3).–3 Given a power series
∞∑
k=0

akz
k, consider the

following subset of R≥0:

I = {r ∈ R≥0 : there exists M such that |an|rn < M, for every n ≥ 0}

This is a non–empty set, since 0 ∈ I. It is also an interval, meaning if r ∈ I and s < r,
then s ∈ I. Let us define R to be the least upper bound of I. Note that if I = [0,∞) then
R =∞. This is just to say that our interval I is of the form [0, R) or [0, R].

Proof of (2). Let z ∈ C be such that |z| = r > R. By our construction of R, this means

the sequence {|an|rn}∞n=0 is unbounded. This implies that
∞∑
k=0

akz
k is divergent. The cleanest

way to prove it is by contradiction. Let us assume
∞∑
k=0

akz
k is convergent. Take ε = 1 (for

definiteness). Then, by definition of convergence, there must exist some N > 0 such that

|anzn + an+1z
n+1 + · · ·+ an+pz

n+p| < 1, for every n ≥ N, p ≥ 0.

In particular (with p = 0), this is saying that |anzn| = |an|rn < 1 for every n ≥ N . Therefore,
if we take

M = Max{|a0|, |a1|r, . . . , |aN−1|rN−1, 1},

then |an|rn < M for every n ≥ 0. But that means r ∈ I and hence r ≤ R. This is a
contradiction to the initial assumption that r > R.

Proof of (1). Now, let us assume that R > 0 (if R = 0, there is nothing to prove in (1)).

We will show the uniform convergence of
∞∑
k=0

akz
k on the open disc D(0;R) (which clearly

implies (1)).

So, let there be given a compact set K ⊂ D(0;R). As K is bounded, there must be
some number r1 < R such that |z| ≤ r1 for every z ∈ K. Pick any real number r2 so that
r1 < r2 < R. Again, by our construction of R, there is a constant M for which |an|rn2 < M
for every n ≥ 0.

With all this preparation, we are ready to prove the convergence of
∞∑
k=0

akz
k that is uni-

form for the compact set K. So, let ε > 0 be given to us. As t = r1
r2
< 1, lim

n→∞
tn = 0, so we

can choose N > 0 such that tN M
1−t < ε.

3Optional. The important bit is to see how the radius of convergence is defined.
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Now, for every n ≥ N , p ≥ 0 and z ∈ K we have:∣∣∣∣∣
n+p∑
k=n

akz
k

∣∣∣∣∣ <
n+p∑
k=n

|ak||z|k (by triangle inequality)

<

n+p∑
k=n

|ak|rk1 <
n+p∑
k=n

M

rk2
rk1 (by definition of M : |a`| <

M

r`2
for every `)

= Mtn(1 + t+ t2 + · · ·+ tp) (recall t =
r1
r2
< 1)

< MtN(1 + t+ t2 + · · · ) =
MtN

1− t
< ε.


