
COMPLEX ANALYSIS: LECTURE 23

(23.0) Review of the previous lecture.– In Lecture 22, we considered a special type of
series of functions, namely power series (see §22.3).

• A power series is a series of the form
∞∑
k=0

akz
k where ak ∈ C for every k ≥ 0.

• Associated to a power series
∞∑
k=0

akz
k is a real number R ∈ R≥0 ∪ {∞}, called its

radius of convergence. It is the unique number such that:

– For every 0 ≤ r < R, we can find some constant M for which |an|rn < M for
every n ≥ 0.

– For every r > R, the sequence of numbers {|an|rn}∞n=0 is unbounded.

In practice, we compute it using the ratio test:

1

R
= lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
• Abel’s theorem (§22.3) implies that within the open disc D(0;R), the power series
∞∑
k=0

akz
k converges uniformly.

• Weierstrass’ theorem (§22.6) on uniform convergence, in turn, implies that the limit
of a uniformly convergent sequence of holomorphic functions is again holomorphic.
Moreover, uniform convergence ensures that we can interchange the order of (a) tak-
ing the limit, and (b) taking derivative or integral over a piecewise smooth path.

(23.1) Power series as holomorphic functions.– Let us combine the two theorems

stated above for power series. Let
∞∑
k=0

akz
k be a power series, and let R be its radius of

convergence. Assume that R > 0 (for R = 0, all the statements below are vacuous!).

(i) The sequence of partial sums, obtained from the power series is:

fn(z) = a0 + a1z + a2z
2 + · · ·+ anz

n =
n∑
k=0

akz
k.

As each fn(z) is a polynomial, hence holomorphic, the power series
∞∑
k=0

akz
k is the (uni-

form) limit of holomorphic functions. By Weierstrass’ theorem on uniform convergence, we
1
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conclude that:
∞∑
k=0

akz
k : D(0;R)→ C is a holomorphic function.

(ii) Now we can interchange the order of differentiation and limit to conclude that power
series can be differentiated term–wise:

d

dz

(
∞∑
k=0

akz
k

)
=
∞∑
k=1

kakz
k−1

(iii) Similarly, an anti–derivative of
∞∑
k=0

akz
k can be computed term–wise, and hence is:

∞∑
k=0

ak
zk+1

k + 1
.

Exercise. (Such problems are optional for our course, but do give it a try. Solution is given

in (23.7) below). If R is the radius of convergence of a power series
∞∑
k=0

akz
k, then R is also

the radius of convergence of
∞∑
k=1

kakz
k−1, and that of

∞∑
k=0

ak
k + 1

zk+1.

Example. Consider the power series A(z) =
∑∞

k=0 z
k. Its radius of convergence is 1. As a

function, it is easy to see that zA(z) = z + z2 + · · · = A(z)− 1, therefore:

∞∑
k=0

zk =
1

1− z
for z ∈ D(0; 1)

Note that the domain of the function
1

1− z
is C \ {1}. But the identity written above is

only valid for |z| < 1.

(23.2) Algebraic operations on power series.– The usual addition and multiplication

of polynomials carries over to power series. Let A(z) =
∞∑
k=0

akz
k and B(z) =

∞∑
`=0

b`z
` be two

power series, with radii of convergence R1 and R2 respectively. Then:

A(z) +B(z) =
∞∑
k=0

(ak + bk)z
k ,

A(z) ·B(z) =
∞∑
n=0

(a0bn + a1bn−1 + · · · anb0)zn =
∞∑
n=0

(
n∑
k=0

akbn−k

)
zn .

Both A(z) + B(z) and A(z) · B(z) have their radii of convergence greater than, or equal
to Min{R1, R2}.



LECTURE 23 3

(23.3) Power series centered at α ∈ C.– Making the situation a little general, by a

power series centered at α ∈ C, we mean a series of the form
∞∑
k=0

ak(z − α)k. A power series

(with no mention of center, as before) is, by default, assumed to be centered at 0.

As before, a power series
∞∑
k=0

ak(z − α)k, centered at α, with radius of convergence R,

defines for us a holomorphic function on the open disc D(α;R) = {z ∈ C : |z − α| < R}.

(23.4) Taylor1 series of a holomorphic function.– Let Ω ⊂ C be an open set, and let
f : Ω → C be a holomorphic function. Let α ∈ Ω, and let R be the largest positive real
number such that the open disc D(α;R) ⊂ Ω.

Theorem. We have a power series, centered at α, of radius of convergence at least R, which
is equal to f on D(α;R):

∞∑
n=0

cn(z − α)n = f(z) for all z ∈ D(α;R).

The coefficients cn (n ≥ 0) are given by Cauchy’s integral formula. Namely, let Cr be the
counterclockwise circle, centered at α, of radius r < R. Then:

cn =
f (n)(α)

n!
=

1

2πi

∫
Cr

f(z)

(z − α)n+1
dz

Proof. 2 Define cn =
f (n)(α)

n!
. We will start by showing that the radius of convergence of

the power series
∞∑
n=0

cn(z − α)n is at least R.

Let us take 0 ≤ r < R. We need to come up with a constant M so that |cn|rn < M for
every n ≥ 0. So, let Cr be the counterclockwise circle as in the statement of the theorem
above. Choose M to be larger than the absolute maximum of |f(z)| on Cr. By Cauchy’s
integral formula, we have:

cn =
f (n)(α)

n!
=

1

2πi

∫
Cr

f(z)

(z − α)n+1
dz.

Now, we can use the important inequality to say:

|cn| <
1

2π

M

rn+1
2πr =

M

rn
.

Thus, |cn|rn < M for every n ≥ 0, which is what we wanted to show.

1Brook Taylor (1685-1731) obtained this formal series in his book Methodus incrementorum dated 1715.
2This proof is due to Cauchy Cours d’Analyse 1822.
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Hence, the power series F (z) =
∞∑
n=0

cn(z−α)n converges uniformly on D(α;R) and defines

a holomorphic function F : D(α;R) → C. Now we have to prove that F (w) = f(w) for
every w ∈ D(α;R). To see this, let us write w = α + h, where |h| < R. Choose r to be
between |h| and R: |h| < r < R. Then, again by Cauchy’s integral formula:

f(α + h) =
1

2πi

∫
Cr

f(z)

z − α− h
dz.

For z on the circle Cr, we have |z − α| = r > |h|. Therefore we can expand (see Example
in §23.1 above):

1

z − α− h
=

1

z − α
· 1

1− h
z−α

=
1

z − α

∞∑
k=0

(
h

z − α

)k
=
∞∑
k=0

hk

(z − α)k+1
.

Substituting it back in the expression for f(α+h) above, and flipping the order of integral
and sum (valid by uniform convergence), we get:

f(α + h) =
∞∑
k=0

hk
1

2πi

∫
Cr

f(z)

(z − α)k+1
dz =

∞∑
k=0

f (k)(α)

k!
hk = F (α + h).

This is exactly what we wanted to verify.
�

(23.5) Examples.– Let us compute the Taylor series expansions of some holomorphic func-
tions.

(1) f(z) = ez. Compute the Taylor series of f cenetered at 0.
Solution. Since f (n)(z) = ez for every n ≥ 0 and f(0) = 1, we get:

ez = 1 +
z

1!
+
z2

2!
+ . . . =

∞∑
k=0

zk

k!
.

The radius of convergence of the power series above is ∞ (see Example (2) of §22.5). This
can also be viewed from the theorem above, since the domain of ez is C. So, the number
R appearing at the beginning of the previous section can be chosen to be as large as we please.

(2) f(z) = sin(z). Again, we are going to compute the Taylor series centered at 0.
Solution. Note that f ′(z) = cos(z), f ′′(z) = − sin(z). Continuing this way, we see that
f (2k)(z) = f(z) = (−1)k sin(z) and f (2k+1)(z) = (−1)k cos(z). Using sin(0) = 0 and cos(0) =
1, we get:

sin(z) = 0 + z − 0
z2

2!
− 1

z3

3!
+ . . . =

∞∑
k=0

(−1)k
z2k+1

(2k + 1)!
.

Again, the radius of convergence of the Taylor series is ∞, because sin(z) is defined for all
z ∈ C.

Alternate solution. We can also use the definition sin(z) =
eiz − e−iz

2i
and the Taylor series

of ez computed above to get the same answer (you should try to do this by yourself).
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(3) f(z) = ln(z), centered at 1 (see Lecture 9, §9.1, page 2).
Solution. f(1) = 0. f ′(z) = z−1, f ′′(z) = −z−2, f (3)(z) = 2z−3 and continuing this way, we
have:

f (n)(z) = (−1)n−1(n− 1)!z−n for every n ≥ 1.

Therefore, f (n)(1) = (−1)n−1(n − 1)!. Hence, the Taylor series expansion of ln(z), centered
at 1 is given by:

ln(z) =
∞∑
n=1

(−1)n−1
(n− 1)!

n!
(z − 1)n =

∞∑
n=1

(−1)n−1
(z − 1)n

n
.

The radius of convergence of this series is 1. Reason 1: the largest open we can have, centered
at 1, on which ln(z) is defined, must have radius 1 (recall ln(z) is not defined for z ∈ R≤0).

Reason 2: use ratio test to compute the radius of convergence of
∞∑
n=1

(−1)n−1
zn

n
.

(4) f(z) =
1

(z − 1)(z − 2)
. Taylor series centered at 0.

Solution. Computing repeated derivatives is going to be difficult. Fortunately, for rational
functions, we can use partial fractions to do the computation as follows.

1

(z − 1)(z − 2)
=

1

z − 2
− 1

z − 1
.

Now, we have (see Example in §23.1 above)

1

z − 1
= − 1

1− z
= −

∞∑
k=0

zk ,

1

z − 2
= −1

2
· 1

1− (z/2)
= −1

2

∞∑
k=0

(z/2)k = −
∞∑
k=0

1

2k+1
zk .

So, the Taylor series expansion is given by:

1

(z − 1)(z − 2)
=
∞∑
n=0

(
1− 1

2n+1

)
zn .

(Convince yourself that the radius of convergence is 1)

(23.6) Power series centered at ∞.– A power series centered at∞ is just a power series

in z−1. Namely, a series of the form
∞∑
k=0

ckz
−k. There is no significant difference here: if R is

the radius of convergence of the series
∞∑
k=0

ckw
k, then

∞∑
k=0

ckz
−k converges uniformly within

the open set:

D(∞;R) =

{
z ∈ C : |z| > 1

R

}
⊂ C.
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(23.7) Solution to Exercise from (23.1).–3 Let R be the radius of convergence of the

power series
∞∑
k=0

akz
k. Recall that, this means:

• For every 0 ≤ r < R, there is a constant (depending on r) M such that |an|rn < M ,
for every n ≥ 0.

• For every r > R, the sequence of numbers {|an|rn}∞n=0 is unbounded.

We want to show that R is the radius of convergence of
∞∑
k=1

kakz
k−1. That means, given

0 ≤ r < R, we must find a constant M for which n|an|rn−1 < M for every n ≥ 1.

So, pick an r1 between r and R: r < r1 < R, and let M1 be the constant so that
|an|rn1 < M1 for every n ≥ 0. Then, we have:

n|an|rn−1 < n
M1

rn1
rn−1 =

M1

r
· n
(
r

r1

)n
.

Let t = r
r1
< 1. Then lim

n→∞
ntn = 0 (verify this!). So, (taking ε = 1 in the definition of the

limit) we can choose N > 0 so that ntn < 1 for every n ≥ N . Then we get:

n|an|rn−1 <
M1

r
for every n ≥ N.

So, the M we are looking for, can be taken to be:

M > Max

{
{k|ak|rk−1}N−1k=1 ,

M1

r

}
.

This proves that the radius of convergence of
∞∑
k=1

kakz
k−1, say R1, is greater than, or equal

to R (that is, R1 ≥ R).

Prove that the radius of convergence of an anti–derivative of a power series is also greater

than or equal to that of the power series itself (second part of the exercise). As
∞∑
k=0

akz
k is

an anti–derivative of
∞∑
k=1

kakz
k−1, we will obtain R ≥ R1, hence they must be equal.

3Optional


