
COMPLEX ANALYSIS: LECTURE 26

(26.0) .– Recall that we defined Res
z=α

(f(z)) for an isolated singularity α ∈ C of a function

f . Thus, f is defined, and holomorphic on the punctured disc of some radius R ∈ R>0,
f : D×(α;R)→ C. (Recall: D×(α;R) = {z ∈ C : 0 < |z − α| < R}.)

Let γ be a positively oriented contour such that (i) α ∈ Interior(γ), and (ii) Interior(γ)\{α}
and γ itself are in the domain of f . Then,

Res
z=α

(f(z)) =
1

2πi

∫
γ

f(z) dz

We saw in Lecture 25, §25.7, that if α is a pole of f , we can use Cauchy’s integral formula
to compute the residue. In any case (whether α is a pole or essential singularity), we have:
Res
z=α

(f(z)) = coefficient of (z − α)−1 in the Laurent series expansion of f near α.

(26.1) The point at ∞.– There is nothing special here. The behaviour of a function f(z)

near z = ∞ is investigated by performing the change of variables z =
1

w
and studying the

point w = 0 of f

(
1

w

)
. In more detail:

(1) z =∞ is a singularity of f(z) if w = 0 is a singularity of f

(
1

w

)
.

(2) Singularity at z =∞ of f(z) is isolated if w = 0 is an isolated singularity of f

(
1

w

)
.

(3) z = ∞ is a removable singularity, a pole, or an essential singularity of f(z) if so is

w = 0 of f

(
1

w

)
.

Examples. (1) ez has an essential singularity at ∞. (2) f(z) =
z + 1

z2 − 3
has a removable

singularity at ∞. (3) Let P (z) be a polynomial of degree n. Then P (z) has a pole of order
n at ∞ (see §26.7 for a converse to this statement).

The following exercise is given here for you to get used to the statements written above.

Exercise. Let f : Ω → C be a holomorphic function, defined on an open set Ω. Prove
that ∞ is an isolated singularity of f if, and only if there is a number R ∈ R>0 such that
{z ∈ C : |z| > R} ⊂ Ω. In this case, verify the following assertions:
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2 LECTURE 26

(1) f(z) has a removable singularity at ∞ if, and only if lim
z→∞

f(z) exists.

(2) f(z) has a pole of order N at ∞ if, and only if lim
z→∞

z−Nf(z) exists, and is non–zero.

(26.2) Residue at∞.– Again, assume that∞ is an isolated singularity of f . Meaning, there
is a number R ∈ R>0 so that f is defined (and holomorphic, as always) on {z ∈ C : |z| > R}.
Thus, all the singularities of f are contained in the closed disc: D(0;R) = {z ∈ C : |z| ≤ R}.

Let γ be a clockwise oriented contour, large enough so as to have all the singularities of f
in the interior of γ. For instance, pick a number ρ > R and let γ = −Cρ be the clockwise
oriented circle of radius ρ, centered at 0. We define:

Res
z=∞

(f(z)) =
1

2πi

∫
γ

f(z) dz

Remark. In the definition of Res
z=∞

(f(z)), the contour used is negatively oriented. The reason

is - as one travels along γ, the point at ∞ should be to the left. I always use the notation C
for counterclockwise oriented circles, that is why there is a minus sign in γ = −Cρ.

The relation between residue of f(z) at ∞, and the residue of f(w−1) at 0 is obtained
as follows. Upon the change of variables w = z−1, we get dw = −z−2dz = −w2dz. Thus

dz = −dw
w2

.

Moreover (easy check) as z moves over −Cρ (clockwise circle of radius ρ, centered at 0),
w = z−1 moves over Cρ−1 (counterclockwise circle of radius ρ−1, centered at 0). This gives:∫

−Cρ
f(z)dz =

∫
Cρ−1

f
(
w−1

) (−1)dw

w2
.

Hence we arrive at the following identity.

Res
z=∞

(f(z)) = −Res
w=0

(
w−2f

(
w−1

))
Example. Let us take a rational function f(z) =

3z2 + 1

(z − 1)(2z − 1)2
. It only has poles at

z = 1 and z = 1/2. Let us compute its residue at ∞ in two different ways.
(i) Directly from the definition. Take ρ = 2 (anything bigger than 1 will suffice), and let Cρ
be the counterclockwise circle of radius ρ, centered at 0. I will leave the following calculation
to you (it actually follows easily from a result that we proved in Lecture 19, §19.5, page 7).

1

2πi

∫
Cρ

f(z) dz =
3

4
.

Hence Res
z=∞

(f(z)) = −3

4
.
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(ii) Using the change of variables z = w−1.

f(w−1) =
3w−2 + 1

(w−1 − 1)(2w−1 − 1)2
=

w(3 + w2)

(1− w)(2− w)2
.

Now we use Res
z=∞

(f(z)) = −Res
w=0

(
w−2f(w−1)

)
to carry out the calculation. Let C be a small

enough counterclockwise circle centered at 0 (small enough = radius < 1).

Res
z=∞

(f(z)) = − 1

2πi

∫
C

3 + w2

w(1− w)(2− w)2
dw = −

[
3 + w2

(1− w)(2− w)2

]
Set w=0

= −3

4
.

(26.3) A word on the non–isolated case.– Recall that an example of a non–isolated
singularity was given in Lecture 24, §24.2: f(z) = cosec

(
z−1
)
. The set of singularities is{

1
nπ

: n ∈ Z6=0

}
∪ {0}, and 0 is not isolated. Meaning, no matter how small radius r > 0 we

pick, the disc D(0; r) will contain a singularity other than 0 (in fact, infinitely many).

In general, α ∈ C is a non–isolated singularity of f , if there exists a sequence {αn}∞n=0 of
complex numbers such that:

• Each αn is a non–removable singularity of f (it could be a pole, or an essential sin-
gularity).

• lim
n→∞

αn = α.

Note that in this case α cannot be removable, or a pole - if it were there would exist some
positive real number r ∈ R>0 such that f is defined on the punctured disc D×(α; r) (see, for
instance, Lecture 25, §25.4). The existence of such r will contradict the fact that αn → α as
n→∞.

Hence, non–isolated singularities can only be essential.

(26.4) Cauchy’s residue theorem.– Let f be a holomorphic function, and γ be a positively
oriented contour. Assume that there are finitely many points α1, α2, . . . , αn ∈ Interior(γ)
such that Interior(γ) \ {α1, α2, . . . , αn} and γ itself are in the domain of f .

Figure 1. f is a holomorphic function defined on an open set, which contains
γ and Interior(γ) \ {α1, α2, . . . , αn}.
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Theorem.

1

2πi

∫
γ

f(z) dz =
n∑
j=1

Res
z=αj

(f(z))

Proof. The proof of this theorem is based on the principle of contour deformation (Lecture
16, §16.1). Namely, let Cj be a small enough, counterclockwise oriented circle, around αj
such that, for k 6= j, αk is not on, or in the interior of Cj (see Figure 1 above). By the
principle of contour deformation:

1

2πi

∫
γ

f(z) dz =
n∑
j=1

1

2πi

∫
Cj

f(z) dz =
n∑
j=1

Res
z=αj

(f(z)) .

The last equality is by definition of the residue. �

Example. Let C be the counterclockwise oriented circle of radius 2, centered at 0. Compute∫
C

eπz

z(z2 + 1)
dz.

∫
C

eπz

z(z2 + 1)
dz = 2πi

(
Res
z=0

(
eπz

z(z2 + 1)

)
+ Res

z=i

(
eπz

z(z2 + 1)

)
+ Res

z=−i

(
eπz

z(z2 + 1)

))
= 2πi

([
eπz

z2 + 1

]
Set z=0

+

[
eπz

z(z + i)

]
Set z=i

+

[
eπz

z(z − i)

]
Set z=−i

)
= 2πi

(
1 +

−1

i(2i)
+

−1

−i(−2i)

)
= 4πi.

(26.5) Meromorphic functions.– A function f is called meromorphic 1 on an open set
Ω ⊂ C, if there exists a subset A ⊂ Ω such that:

• f : Ω \ A→ C is holomorphic.

• Every α ∈ A is either a removable singularity, or a pole of f (that is, f is not allowed
to have essential singularities in Ω).

Example. Every holomorphic function is also meromorphic, with A = ∅. cosec(z) and
cot(z) are meromorphic functions on C, with A = {nπ : n ∈ Z}. e1/z is not meromorphic on
C (though it is holomorphic on C \ {0}, it has an essential singularity at 0).

A rational function, for instance f(z) =
z3 + z + 3

z5 − 1
, is meromorphic on C (in the example,

f(z) has poles at the fifth roots of unity).

1Greek: holo = whole/entire, mero = part. This is to highlight that f is only defined on a part of Ω.
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The following notation is sometimes used for meromorphic functions: f : Ω 99K C to
indicate that f may not be defined on a subset A ⊂ Ω. I am going to assume that every
point of A is a pole (by including removable singularities in the domain of f). A pole is always
isolated, so the set A itself has to be discrete (meaning, for every α ∈ A, there exists r ∈ R>0

such that the punctured disc around α of radius r does not intersect A: D×(α;R)∩A = ∅).
This leads to the following important property of meromorphic functions.

Proposition. Let K ⊂ C be a closed and bounded (in other words, compact) set, such that
K ⊂ Ω. Then K ∩ A is finite.

Proof. This is an application of Bolzano–Weierstrass theorem2 : an infinite collection of
points in a compact set always have a cluster point. More precisely, if {αn}∞n=0 is contained
in a compact set K, then there exists α ∈ K with the property that for every r > 0, there
are infinitely many α′ns with |α− αn| < r.

Assume, for the sake of obtaining a contradiction, that K ∩ A is infinite. By Bolzano–
Weierstrass theorem, we will have a point α ∈ K ⊂ Ω, such that for every r > 0, D×(α; r)∩
A 6= ∅. This α is then a non–isolated, hence essential singularity of f (see §26.3 above).
This contradicts the assumption that f is meromorphic (f is not allowed to have essential
singularities in Ω). �

(26.6) Application 1: sum of residues.– Let f : C 99K C be a meromorphic function.
Assume that ∞ is an isolated singularity of f .

This means that there is a number R ∈ R>0 so that f is defined and holomorphic on the
open set {z ∈ C : |z| > R} (see §26.1 above). Hence, all the singularities (which are neces-
sarily poles since f is meromorphic) are contained in the compact set K = {z ∈ C : |z| ≤ R}.
Therefore, by Proposition 26.5 above, there are only finitely many of them, say α1, α2, . . . , αn.

Cauchy’s residue theorem (§26.4), and the definition of Res
z=∞

(f(z)) (§26.2) imply:

n∑
j=1

Res
z=αj

(f(z)) + Res
z=∞

(f(z)) = 0

(26.7) Application 2: entire functions with a pole at ∞.– The following argument
is a mild generalization of the one we saw in the proof of Liouville’s theorem (Lecture 18,
§18.2, page 3).

Let f : C → C be a holomorphic function defined on the entire complex plane (such
functions are called entire functions). Assume that f has a pole of order N at ∞.

Claim. f is a polynomial of degree N .

2A proof of Bolzano–Weierstrass theorem (over R) is given in Optional Reading A, §A.2. I will leave it
to you (if you are interested) to carry out the proof over C - hint: use the version over R for the real and
imaginary parts.
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Proof. Let us take the Taylor series expansion of f near 0: f(z) =
∞∑
k=0

akz
k. As f is entire,

the radius of convergence of this series is ∞, by Theorem (23.4) of Lecture 23.

As f has a pole of order N at∞, by the exercise given in §26.1 above, lim
z→∞

z−Nf(z) exists

and is non–zero. In particular it implies, by definition of the limit, that there is a number
R ∈ R>0, and a constant M ∈ R>0 so that

|z−Nf(z)| < M for every z ∈ C such that |z| > R.

The coefficients of the Taylor series of f(z) can be computed as follows. Take any ρ > 0,
and let Cρ be the counterclockwise circle of radius ρ centered at 0. Then:

ak =
1

2πi

∫
Cρ

f(z)

zk+1
dz.

(we can take ρ > 0 to be as large as we want, since f is defined on the entire complex plane).

Now, taking ρ > R, we can estimate |ak| for k ≥ N + 1, using the bound of |z−Nf(z)|
written above, and our important inequality (see Lecture 12, §12.7, page 9). For every ` ≥ 0:

|aN+1+`| =

∣∣∣∣∣ 1

2πi

∫
Cρ

f(z)

zN+`+2
dz

∣∣∣∣∣ < 1

2π

M

ρ`+2
2πρ =

M

ρ`+1

As
M

ρ`+1
→ 0 as ρ → ∞, we conclude that |aN+1+`| = 0 for every ` ≥ 0. Hence,

f(z) = a0 + a1z + · · ·+ aNz
N is a polynomial.

Note that lim
z→∞

z−Nf(z) = aN which was assumed to be non–zero. Hence degree of f is

precisely N . �

(26.8) Meromorphic functions on C with a pole at ∞.–

Theorem. Let us assume that we have a meromorphic function f : C 99K C which has a
pole at ∞ (in particular, ∞ is an isolated singularity of f).

Then, f(z) is a rational function.

Proof. Using the argument given in §26.6 above, we know f will only have finitely many
poles {α1, α2, . . . , αn} ⊂ C. For any 1 ≤ j ≤ n, we have the Laurent series expansion of f
near αj (remember: it is a pole, say of order Nj):

f(z) =
d
(j)
Nj

(z − αj)Nj
+ · · ·+ d

(j)
1

z − αj
+
∞∑
k=0

c
(j)
k (z − αj)k .
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Let us define:

Rj(z) =
d
(j)
Nj

(z − αj)Nj
+ · · ·+ d

(j)
1

z − αj
.

Then, each Rj(z) is a rational function, with only pole at αj. Moreoever, lim
z→∞

Rj(z) = 0.

Let us define g(z) = f(z)−
n∑
j=1

Rj(z).

Claim. g(z) is holomorphic on the entire complex plane.

Let us assume this claim to be true and proceed with the proof of the theorem. Note that
if f(z) has a pole of order N at∞, then so does g(z). This is because lim

z→∞
z−NRj(z) = 0, for

every j, and therefore lim
z→∞

z−Ng(z) = lim
N→∞

z−Nf(z). Hence g(z) is a polynomial of degree

N , by §26.7 above. We can now conclude that f(z) = g(z)+
n∑
j=1

Rj(z) is a rational function,

being a sum of a polynomial and finite number of rational functions.

Proof of the claim. For w ∈ C, w 6∈ {α1, α2, . . . , αn}, it is clear that g is holomorphic at w
(since f and R′js are). So, let us consider the situation near w = αj (j ∈ {1, 2, . . . , n}). Each
R`(z), with ` 6= j, is holomorphic at αj, since the only singularity of R` is α`. Moreover,

near αj, we have the following expansion f(z) − Rj(z) =
∞∑
k=0

c
(j)
k (z − αj)k, which means αj

is a removable singularity of f(z)−Rj(z). Hence we conclude that

g(z) = f(z)−Rj(z)−
n∑
`=1
`6=j

R`(z) is holomorphic at αj .

So g(z) has no singularities in the entire complex plane. The claim follows. �


