COMPLEX ANALYSIS: LECTURE 26

(26.0) - Recall that we defined $\operatorname{Res}_{z=\alpha}(f(z))$ for an isolated singularity $\alpha \in \mathbb{C}$ of a function f. Thus, f is defined, and holomorphic on the punctured disc of some radius $R \in \mathbb{R}_{>0}$, $f: D^{\times}(\alpha; R) \to \mathbb{C}$. (Recall: $D^{\times}(\alpha; R) = \{z \in \mathbb{C} : 0 < |z - \alpha| < R\}$.)

Let γ be a positively oriented contour such that (i) $\alpha \in \text{Interior}(\gamma)$, and (ii) $\text{Interior}(\gamma) \setminus \{\alpha\}$ and γ itself are in the domain of f. Then,

$$\operatorname{Res}_{z=\alpha}(f(z)) = \frac{1}{2\pi \mathbf{i}} \int_{\gamma} f(z) \, dz$$

We saw in Lecture 25, §25.7, that if α is a pole of f, we can use Cauchy's integral formula to compute the residue. In any case (whether α is a pole or essential singularity), we have: $\operatorname{Res}_{z=\alpha}(f(z)) = \operatorname{coefficient} \operatorname{of} (z - \alpha)^{-1}$ in the Laurent series expansion of f near α .

(26.1) The point at ∞ . – There is nothing special here. The behaviour of a function f(z) near $z = \infty$ is investigated by performing the change of variables $z = \frac{1}{w}$ and studying the point w = 0 of $f\left(\frac{1}{w}\right)$. In more detail:

(1) $z = \infty$ is a singularity of f(z) if w = 0 is a singularity of $f\left(\frac{1}{w}\right)$.

(2) Singularity at $z = \infty$ of f(z) is isolated if w = 0 is an isolated singularity of $f\left(\frac{1}{w}\right)$.

(3) $z = \infty$ is a removable singularity, a pole, or an essential singularity of f(z) if so is w = 0 of $f\left(\frac{1}{w}\right)$.

Examples. (1) e^z has an essential singularity at ∞ . (2) $f(z) = \frac{z+1}{z^2-3}$ has a removable singularity at ∞ . (3) Let P(z) be a polynomial of degree n. Then P(z) has a pole of order n at ∞ (see §26.7 for a converse to this statement).

The following exercise is given here for you to get used to the statements written above.

Exercise. Let $f : \Omega \to \mathbb{C}$ be a holomorphic function, defined on an open set Ω . Prove that ∞ is an isolated singularity of f if, and only if there is a number $R \in \mathbb{R}_{>0}$ such that $\{z \in \mathbb{C} : |z| > R\} \subset \Omega$. In this case, verify the following assertions:

(1) f(z) has a removable singularity at ∞ if, and only if $\lim_{z\to\infty} f(z)$ exists.

(2) f(z) has a pole of order N at ∞ if, and only if $\lim_{z \to \infty} z^{-N} f(z)$ exists, and is non-zero.

(26.2) Residue at ∞ .- Again, assume that ∞ is an isolated singularity of f. Meaning, there is a number $R \in \mathbb{R}_{>0}$ so that f is defined (and holomorphic, as always) on $\{z \in \mathbb{C} : |z| > R\}$. Thus, all the singularities of f are contained in the closed disc: $\overline{D(0;R)} = \{z \in \mathbb{C} : |z| \le R\}$.

Let γ be a *clockwise oriented* contour, large enough so as to have all the singularities of f in the interior of γ . For instance, pick a number $\rho > R$ and let $\gamma = -C_{\rho}$ be the *clockwise* oriented circle of radius ρ , centered at 0. We define:

$$\operatorname{Res}_{z=\infty} \left(f(z) \right) = \frac{1}{2\pi \mathbf{i}} \int_{\gamma} f(z) \, dz$$

Remark. In the definition of $\operatorname{Res}_{z=\infty}(f(z))$, the contour used is *negatively* oriented. The reason is - as one travels along γ , the point at ∞ should be to the left. I always use the notation C for *counterclockwise oriented* circles, that is why there is a minus sign in $\gamma = -C_{\rho}$.

The relation between residue of f(z) at ∞ , and the residue of $f(w^{-1})$ at 0 is obtained as follows. Upon the change of variables $w = z^{-1}$, we get $dw = -z^{-2}dz = -w^2dz$. Thus $dz = -\frac{dw}{w^2}$.

Moreover (easy check) as z moves over $-C_{\rho}$ (clockwise circle of radius ρ , centered at 0), $w = z^{-1}$ moves over $C_{\rho^{-1}}$ (counterclockwise circle of radius ρ^{-1} , centered at 0). This gives:

$$\int_{-C_{\rho}} f(z) dz = \int_{C_{\rho^{-1}}} f(w^{-1}) \frac{(-1)dw}{w^2}$$

Hence we arrive at the following identity.

$$\operatorname{Res}_{z=\infty} \left(f(z) \right) = -\operatorname{Res}_{w=0} \left(w^{-2} f\left(w^{-1} \right) \right)$$

Example. Let us take a rational function $f(z) = \frac{3z^2 + 1}{(z-1)(2z-1)^2}$. It only has poles at z = 1 and z = 1/2. Let us compute its residue at ∞ in two different ways.

(i) Directly from the definition. Take $\rho = 2$ (anything bigger than 1 will suffice), and let C_{ρ} be the counterclockwise circle of radius ρ , centered at 0. I will leave the following calculation to you (it actually follows easily from a result that we proved in Lecture 19, §19.5, page 7).

$$\frac{1}{2\pi \mathbf{i}} \int_{C_{\rho}} f(z) \, dz = \frac{3}{4}.$$

Hence $\operatorname{Res}_{z=\infty}(f(z)) = -\frac{3}{4}.$

(ii) Using the change of variables $z = w^{-1}$.

$$f(w^{-1}) = \frac{3w^{-2} + 1}{(w^{-1} - 1)(2w^{-1} - 1)^2} = \frac{w(3 + w^2)}{(1 - w)(2 - w)^2}.$$

Now we use $\operatorname{Res}_{z=\infty} (f(z)) = -\operatorname{Res}_{w=0} (w^{-2}f(w^{-1}))$ to carry out the calculation. Let C be a small enough counterclockwise circle centered at 0 (small enough = radius < 1).

$$\operatorname{Res}_{z=\infty}(f(z)) = -\frac{1}{2\pi \mathbf{i}} \int_C \frac{3+w^2}{w(1-w)(2-w)^2} \, dw = -\left[\frac{3+w^2}{(1-w)(2-w)^2}\right]_{\operatorname{Set}\,w=0} = -\frac{3}{4}$$

(26.3) A word on the non-isolated case. Recall that an example of a non-isolated singularity was given in Lecture 24, §24.2: $f(z) = \operatorname{cosec}(z^{-1})$. The set of singularities is $\{\frac{1}{n\pi} : n \in \mathbb{Z}_{\neq 0}\} \cup \{0\}$, and 0 is not isolated. Meaning, no matter how small radius r > 0 we pick, the disc D(0; r) will contain a singularity other than 0 (in fact, infinitely many).

In general, $\alpha \in \mathbb{C}$ is a non-isolated singularity of f, if there exists a sequence $\{\alpha_n\}_{n=0}^{\infty}$ of complex numbers such that:

- Each α_n is a *non-removable* singularity of f (it could be a pole, or an essential singularity).
- $\lim_{n \to \infty} \alpha_n = \alpha.$

Note that in this case α cannot be removable, or a pole - if it were there would exist some positive real number $r \in \mathbb{R}_{>0}$ such that f is defined on the punctured disc $D^{\times}(\alpha; r)$ (see, for instance, Lecture 25, §25.4). The existence of such r will contradict the fact that $\alpha_n \to \alpha$ as $n \to \infty$.

Hence, non-isolated singularities can only be essential.

(26.4) Cauchy's residue theorem. Let f be a holomorphic function, and γ be a positively oriented contour. Assume that there are finitely many points $\alpha_1, \alpha_2, \ldots, \alpha_n \in \text{Interior}(\gamma)$ such that $\text{Interior}(\gamma) \setminus \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ and γ itself are in the domain of f.

FIGURE 1. f is a holomorphic function defined on an open set, which contains γ and Interior $(\gamma) \setminus \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$.

Theorem.

$$\left|\frac{1}{2\pi \mathbf{i}} \int_{\gamma} f(z) \, dz = \sum_{j=1}^{n} \operatorname{Res}_{z=\alpha_j} \left(f(z)\right)\right|$$

Proof. The proof of this theorem is based on the principle of contour deformation (Lecture 16, §16.1). Namely, let C_j be a small enough, counterclockwise oriented circle, around α_j such that, for $k \neq j$, α_k is not on, or in the interior of C_j (see Figure 1 above). By the principle of contour deformation:

$$\frac{1}{2\pi \mathbf{i}} \int_{\gamma} f(z) \, dz = \sum_{j=1}^{n} \frac{1}{2\pi \mathbf{i}} \int_{C_j} f(z) \, dz = \sum_{j=1}^{n} \operatorname{Res}_{z=\alpha_j} \left(f(z) \right).$$

The last equality is by definition of the residue.

Example. Let C be the counterclockwise oriented circle of radius 2, centered at 0. Compute $\int_C \frac{e^{\pi z}}{z(z^2+1)} dz.$

$$\begin{split} \int_C \frac{e^{\pi z}}{z(z^2+1)} \, dz &= 2\pi \mathbf{i} \left(\operatorname{Res}_{z=0} \left(\frac{e^{\pi z}}{z(z^2+1)} \right) + \operatorname{Res}_{z=\mathbf{i}} \left(\frac{e^{\pi z}}{z(z^2+1)} \right) + \operatorname{Res}_{z=-\mathbf{i}} \left(\frac{e^{\pi z}}{z(z^2+1)} \right) \right) \\ &= 2\pi \mathbf{i} \left(\left[\frac{e^{\pi z}}{z^2+1} \right]_{\operatorname{Set} z=0} + \left[\frac{e^{\pi z}}{z(z+\mathbf{i})} \right]_{\operatorname{Set} z=\mathbf{i}} + \left[\frac{e^{\pi z}}{z(z-\mathbf{i})} \right]_{\operatorname{Set} z=-\mathbf{i}} \right) \\ &= 2\pi \mathbf{i} \left(1 + \frac{-1}{\mathbf{i}(2\mathbf{i})} + \frac{-1}{-\mathbf{i}(-2\mathbf{i})} \right) \\ &= 4\pi \mathbf{i}. \end{split}$$

(26.5) Meromorphic functions. A function f is called *meromorphic*¹ on an open set $\Omega \subset \mathbb{C}$, if there exists a subset $A \subset \Omega$ such that:

- $f: \Omega \setminus A \to \mathbb{C}$ is holomorphic.
- Every $\alpha \in A$ is either a removable singularity, or a pole of f (that is, f is not allowed to have essential singularities in Ω).

Example. Every holomorphic function is also meromorphic, with $A = \emptyset$. $\operatorname{cosec}(z)$ and $\operatorname{cot}(z)$ are meromorphic functions on \mathbb{C} , with $A = \{n\pi : n \in \mathbb{Z}\}$. $e^{1/z}$ is not meromorphic on \mathbb{C} (though it is holomorphic on $\mathbb{C} \setminus \{0\}$, it has an essential singularity at 0).

A rational function, for instance $f(z) = \frac{z^3 + z + 3}{z^5 - 1}$, is meromorphic on \mathbb{C} (in the example, f(z) has poles at the fifth roots of unity).

¹Greek: holo = whole/entire, mero = part. This is to highlight that f is only defined on a part of Ω .

The following notation is sometimes used for meromorphic functions: $f : \Omega \to \mathbb{C}$ to indicate that f may not be defined on a subset $A \subset \Omega$. I am going to assume that every point of A is a pole (by including removable singularities in the domain of f). A pole is always isolated, so the set A itself has to be *discrete* (meaning, for every $\alpha \in A$, there exists $r \in \mathbb{R}_{>0}$ such that the punctured disc around α of radius r does not intersect A: $D^{\times}(\alpha; R) \cap A = \emptyset$). This leads to the following important property of meromorphic functions.

Proposition. Let $K \subset \mathbb{C}$ be a closed and bounded (in other words, compact) set, such that $K \subset \Omega$. Then $K \cap A$ is finite.

Proof. This is an application of Bolzano–Weierstrass theorem² : an infinite collection of points in a compact set always have a cluster point. More precisely, if $\{\alpha_n\}_{n=0}^{\infty}$ is contained in a compact set K, then there exists $\alpha \in K$ with the property that for every r > 0, there are infinitely many $\alpha'_n s$ with $|\alpha - \alpha_n| < r$.

Assume, for the sake of obtaining a contradiction, that $K \cap A$ is infinite. By Bolzano–Weierstrass theorem, we will have a point $\alpha \in K \subset \Omega$, such that for every r > 0, $D^{\times}(\alpha; r) \cap A \neq \emptyset$. This α is then a *non-isolated*, hence essential singularity of f (see §26.3 above). This contradicts the assumption that f is meromorphic (f is not allowed to have essential singularities in Ω).

(26.6) Application 1: sum of residues. – Let $f : \mathbb{C} \dashrightarrow \mathbb{C}$ be a meromorphic function. Assume that ∞ is an isolated singularity of f.

This means that there is a number $R \in \mathbb{R}_{>0}$ so that f is defined and holomorphic on the open set $\{z \in \mathbb{C} : |z| > R\}$ (see §26.1 above). Hence, all the singularities (which are necessarily poles since f is meromorphic) are contained in the compact set $K = \{z \in \mathbb{C} : |z| \le R\}$. Therefore, by Proposition 26.5 above, there are only finitely many of them, say $\alpha_1, \alpha_2, \ldots, \alpha_n$.

Cauchy's residue theorem (§26.4), and the definition of $\underset{z=\infty}{\operatorname{Res}} (f(z))$ (§26.2) imply:

$$\sum_{j=1}^{n} \operatorname{Res}_{z=\alpha_j} \left(f(z) \right) + \operatorname{Res}_{z=\infty} \left(f(z) \right) = 0$$

(26.7) Application 2: entire functions with a pole at ∞ .- The following argument is a mild generalization of the one we saw in the proof of Liouville's theorem (Lecture 18, §18.2, page 3).

Let $f : \mathbb{C} \to \mathbb{C}$ be a holomorphic function defined on the entire complex plane (such functions are called *entire functions*). Assume that f has a pole of order N at ∞ .

Claim. f is a polynomial of degree N.

²A proof of Bolzano–Weierstrass theorem (over \mathbb{R}) is given in Optional Reading A, §A.2. I will leave it to you (if you are interested) to carry out the proof over \mathbb{C} - hint: use the version over \mathbb{R} for the real and imaginary parts.

LECTURE 26

Proof. Let us take the Taylor series expansion of f near 0: $f(z) = \sum_{k=0}^{\infty} a_k z^k$. As f is entire, the radius of convergence of this series is ∞ , by Theorem (23.4) of Lecture 23.

As f has a pole of order N at ∞ , by the exercise given in §26.1 above, $\lim_{z\to\infty} z^{-N}f(z)$ exists and is non-zero. In particular it implies, by definition of the limit, that there is a number $R \in \mathbb{R}_{>0}$, and a constant $M \in \mathbb{R}_{>0}$ so that

$$|z^{-N}f(z)| < M$$
 for every $z \in \mathbb{C}$ such that $|z| > R$.

The coefficients of the Taylor series of f(z) can be computed as follows. Take any $\rho > 0$, and let C_{ρ} be the counterclockwise circle of radius ρ centered at 0. Then:

$$a_k = \frac{1}{2\pi \mathbf{i}} \int_{C_\rho} \frac{f(z)}{z^{k+1}} \, dz.$$

(we can take $\rho > 0$ to be as large as we want, since f is defined on the entire complex plane).

Now, taking $\rho > R$, we can estimate $|a_k|$ for $k \ge N + 1$, using the bound of $|z^{-N}f(z)|$ written above, and our important inequality (see Lecture 12, §12.7, page 9). For every $\ell \ge 0$:

$$|a_{N+1+\ell}| = \left|\frac{1}{2\pi \mathbf{i}} \int_{C_{\rho}} \frac{f(z)}{z^{N+\ell+2}} \, dz\right| < \frac{1}{2\pi} \frac{M}{\rho^{\ell+2}} 2\pi\rho = \frac{M}{\rho^{\ell+1}}$$

As $\frac{M}{\rho^{\ell+1}} \to 0$ as $\rho \to \infty$, we conclude that $|a_{N+1+\ell}| = 0$ for every $\ell \ge 0$. Hence, $f(z) = a_0 + a_1 z + \cdots + a_N z^N$ is a polynomial.

Note that $\lim_{z\to\infty} z^{-N} f(z) = a_N$ which was assumed to be non-zero. Hence degree of f is precisely N.

(26.8) Meromorphic functions on $\mathbb C$ with a pole at ∞ .–

Theorem. Let us assume that we have a meromorphic function $f : \mathbb{C} \dashrightarrow \mathbb{C}$ which has a pole at ∞ (in particular, ∞ is an isolated singularity of f).

Then, f(z) is a rational function.

Proof. Using the argument given in §26.6 above, we know f will only have finitely many poles $\{\alpha_1, \alpha_2, \ldots, \alpha_n\} \subset \mathbb{C}$. For any $1 \leq j \leq n$, we have the Laurent series expansion of f near α_j (remember: it is a pole, say of order N_j):

$$f(z) = \frac{d_{N_j}^{(j)}}{(z - \alpha_j)^{N_j}} + \dots + \frac{d_1^{(j)}}{z - \alpha_j} + \sum_{k=0}^{\infty} c_k^{(j)} (z - \alpha_j)^k .$$

Let us define:

$$R_j(z) = \frac{d_{N_j}^{(j)}}{(z - \alpha_j)^{N_j}} + \dots + \frac{d_1^{(j)}}{z - \alpha_j}.$$

Then, each $R_j(z)$ is a rational function, with only pole at α_j . Moreoever, $\lim_{z\to\infty} R_j(z) = 0$.

Let us define
$$g(z) = f(z) - \sum_{j=1}^{n} R_j(z)$$

Claim. g(z) is holomorphic on the entire complex plane.

Let us assume this claim to be true and proceed with the proof of the theorem. Note that if f(z) has a pole of order N at ∞ , then so does g(z). This is because $\lim_{z \to \infty} z^{-N} R_j(z) = 0$, for every j, and therefore $\lim_{z \to \infty} z^{-N} g(z) = \lim_{N \to \infty} z^{-N} f(z)$. Hence g(z) is a polynomial of degree N, by §26.7 above. We can now conclude that $f(z) = g(z) + \sum_{j=1}^{n} R_j(z)$ is a rational function, being a sum of a polynomial and finite number of rational functions.

Proof of the claim. For $w \in \mathbb{C}$, $w \notin \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$, it is clear that g is holomorphic at w(since f and $R'_j s$ are). So, let us consider the situation near $w = \alpha_j$ ($j \in \{1, 2, \ldots, n\}$). Each $R_\ell(z)$, with $\ell \neq j$, is holomorphic at α_j , since the only singularity of R_ℓ is α_ℓ . Moreover, near α_j , we have the following expansion $f(z) - R_j(z) = \sum_{k=0}^{\infty} c_k^{(j)} (z - \alpha_j)^k$, which means α_j is a removable singularity of $f(z) - R_j(z)$. Hence we conclude that

$$g(z) = f(z) - R_j(z) - \sum_{\substack{\ell=1\\\ell\neq j}}^n R_\ell(z)$$
 is holomorphic at α_j .

So g(z) has no singularities in the entire complex plane. The claim follows.