COMPLEX ANALYSIS: LECTURE 26

(26.0) .- Recall that we defined $\operatorname{Res}_{z=\alpha}(f(z))$ for an isolated singularity $\alpha \in \mathbb{C}$ of a function f. Thus, f is defined, and holomorphic on the punctured disc of some radius $R \in \mathbb{R}_{>0}$, $f: D^{\times}(\alpha ; R) \rightarrow \mathbb{C}$. (Recall: $D^{\times}(\alpha ; R)=\{z \in \mathbb{C}: 0<|z-\alpha|<R\}$.)

Let γ be a positively oriented contour such that (i) $\alpha \in \operatorname{Interior}(\gamma)$, and (ii) Interior $(\gamma) \backslash\{\alpha\}$ and γ itself are in the domain of f. Then,

$$
\operatorname{Res}_{z=\alpha}(f(z))=\frac{1}{2 \pi \mathbf{i}} \int_{\gamma} f(z) d z
$$

We saw in Lecture $25, \S 25.7$, that if α is a pole of f, we can use Cauchy's integral formula to compute the residue. In any case (whether α is a pole or essential singularity), we have: $\operatorname{Res}_{z=\alpha}(f(z))=$ coefficient of $(z-\alpha)^{-1}$ in the Laurent series expansion of f near α.
(26.1) The point at ∞.- There is nothing special here. The behaviour of a function $f(z)$ near $z=\infty$ is investigated by performing the change of variables $z=\frac{1}{w}$ and studying the point $w=0$ of $f\left(\frac{1}{w}\right)$. In more detail:
(1) $z=\infty$ is a singularity of $f(z)$ if $w=0$ is a singularity of $f\left(\frac{1}{w}\right)$.
(2) Singularity at $z=\infty$ of $f(z)$ is isolated if $w=0$ is an isolated singularity of $f\left(\frac{1}{w}\right)$.
(3) $z=\infty$ is a removable singularity, a pole, or an essential singularity of $f(z)$ if so is $w=0$ of $f\left(\frac{1}{w}\right)$.
Examples. (1) e^{z} has an essential singularity at ∞. (2) $f(z)=\frac{z+1}{z^{2}-3}$ has a removable singularity at ∞. (3) Let $P(z)$ be a polynomial of degree n. Then $P(z)$ has a pole of order n at ∞ (see $\S 26.7$ for a converse to this statement).

The following exercise is given here for you to get used to the statements written above.
Exercise. Let $f: \Omega \rightarrow \mathbb{C}$ be a holomorphic function, defined on an open set Ω. Prove that ∞ is an isolated singularity of f if, and only if there is a number $R \in \mathbb{R}_{>0}$ such that $\{z \in \mathbb{C}:|z|>R\} \subset \Omega$. In this case, verify the following assertions:
(1) $f(z)$ has a removable singularity at ∞ if, and only if $\lim _{z \rightarrow \infty} f(z)$ exists.
(2) $f(z)$ has a pole of order N at ∞ if, and only if $\lim _{z \rightarrow \infty} z^{-N} f(z)$ exists, and is non-zero.
(26.2) Residue at ∞.- Again, assume that ∞ is an isolated singularity of f. Meaning, there is a number $R \in \mathbb{R}_{>0}$ so that f is defined (and holomorphic, as always) on $\{z \in \mathbb{C}:|z|>R\}$. Thus, all the singularities of f are contained in the closed disc: $\overline{D(0 ; R)}=\{z \in \mathbb{C}:|z| \leq R\}$.

Let γ be a clockwise oriented contour, large enough so as to have all the singularities of f in the interior of γ. For instance, pick a number $\rho>R$ and let $\gamma=-C_{\rho}$ be the clockwise oriented circle of radius ρ, centered at 0 . We define:

$$
\operatorname{Res}_{z=\infty}(f(z))=\frac{1}{2 \pi \mathbf{i}} \int_{\gamma} f(z) d z
$$

Remark. In the definition of $\underset{z=\infty}{\operatorname{Res}}(f(z))$, the contour used is negatively oriented. The reason is - as one travels along γ, the point at ∞ should be to the left. I always use the notation C for counterclockwise oriented circles, that is why there is a minus sign in $\gamma=-C_{\rho}$.

The relation between residue of $f(z)$ at ∞, and the residue of $f\left(w^{-1}\right)$ at 0 is obtained as follows. Upon the change of variables $w=z^{-1}$, we get $d w=-z^{-2} d z=-w^{2} d z$. Thus $d z=-\frac{d w}{w^{2}}$.

Moreover (easy check) as z moves over $-C_{\rho}$ (clockwise circle of radius ρ, centered at 0), $w=z^{-1}$ moves over $C_{\rho^{-1}}$ (counterclockwise circle of radius ρ^{-1}, centered at 0). This gives:

$$
\int_{-C_{\rho}} f(z) d z=\int_{C_{\rho^{-1}}} f\left(w^{-1}\right) \frac{(-1) d w}{w^{2}}
$$

Hence we arrive at the following identity.

$$
\operatorname{Res}_{z=\infty}(f(z))=-\operatorname{Res}_{w=0}\left(w^{-2} f\left(w^{-1}\right)\right)
$$

Example. Let us take a rational function $f(z)=\frac{3 z^{2}+1}{(z-1)(2 z-1)^{2}}$. It only has poles at $z=1$ and $z=1 / 2$. Let us compute its residue at ∞ in two different ways.
(i) Directly from the definition. Take $\rho=2$ (anything bigger than 1 will suffice), and let C_{ρ} be the counterclockwise circle of radius ρ, centered at 0 . I will leave the following calculation to you (it actually follows easily from a result that we proved in Lecture 19, $\S 19.5$, page 7).

$$
\frac{1}{2 \pi \mathbf{i}} \int_{C_{\rho}} f(z) d z=\frac{3}{4}
$$

Hence $\operatorname{Res}_{z=\infty}(f(z))=-\frac{3}{4}$.
(ii) Using the change of variables $z=w^{-1}$.

$$
f\left(w^{-1}\right)=\frac{3 w^{-2}+1}{\left(w^{-1}-1\right)\left(2 w^{-1}-1\right)^{2}}=\frac{w\left(3+w^{2}\right)}{(1-w)(2-w)^{2}}
$$

Now we use $\underset{z=\infty}{\operatorname{Res}}(f(z))=-\operatorname{Res}_{w=0}\left(w^{-2} f\left(w^{-1}\right)\right)$ to carry out the calculation. Let C be a small enough counterclockwise circle centered at 0 (small enough $=$ radius <1).

$$
\operatorname{Res}_{z=\infty}(f(z))=-\frac{1}{2 \pi \mathbf{i}} \int_{C} \frac{3+w^{2}}{w(1-w)(2-w)^{2}} d w=-\left[\frac{3+w^{2}}{(1-w)(2-w)^{2}}\right]_{\text {Set } w=0}=-\frac{3}{4} .
$$

(26.3) A word on the non-isolated case.- Recall that an example of a non-isolated singularity was given in Lecture 24, §24.2: $f(z)=\operatorname{cosec}\left(z^{-1}\right)$. The set of singularities is $\left\{\frac{1}{n \pi}: n \in \mathbb{Z}_{\neq 0}\right\} \cup\{0\}$, and 0 is not isolated. Meaning, no matter how small radius $r>0$ we pick, the disc $D(0 ; r)$ will contain a singularity other than 0 (in fact, infinitely many).

In general, $\alpha \in \mathbb{C}$ is a non-isolated singularity of f, if there exists a sequence $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ of complex numbers such that:

- Each α_{n} is a non-removable singularity of f (it could be a pole, or an essential singularity).
- $\lim _{n \rightarrow \infty} \alpha_{n}=\alpha$.

Note that in this case α cannot be removable, or a pole - if it were there would exist some positive real number $r \in \mathbb{R}_{>0}$ such that f is defined on the punctured disc $D^{\times}(\alpha ; r)$ (see, for instance, Lecture $25, \S 25.4$). The existence of such r will contradict the fact that $\alpha_{n} \rightarrow \alpha$ as $n \rightarrow \infty$.

Hence, non-isolated singularities can only be essential.

(26.4) Cauchy's residue theorem. - Let f be a holomorphic function, and γ be a positively oriented contour. Assume that there are finitely many points $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \operatorname{Interior}(\gamma)$ such that $\operatorname{Interior}(\gamma) \backslash\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ and γ itself are in the domain of f.

Figure 1. f is a holomorphic function defined on an open set, which contains γ and Interior $(\gamma) \backslash\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$.

Theorem.

$$
\frac{1}{2 \pi \mathbf{i}} \int_{\gamma} f(z) d z=\sum_{j=1}^{n} \operatorname{Res}_{z=\alpha_{j}}(f(z))
$$

Proof. The proof of this theorem is based on the principle of contour deformation (Lecture $16, \S 16.1)$. Namely, let C_{j} be a small enough, counterclockwise oriented circle, around α_{j} such that, for $k \neq j, \alpha_{k}$ is not on, or in the interior of C_{j} (see Figure 1 above). By the principle of contour deformation:

$$
\frac{1}{2 \pi \mathbf{i}} \int_{\gamma} f(z) d z=\sum_{j=1}^{n} \frac{1}{2 \pi \mathbf{i}} \int_{C_{j}} f(z) d z=\sum_{j=1}^{n} \operatorname{Res}_{z=\alpha_{j}}(f(z)) .
$$

The last equality is by definition of the residue.

Example. Let C be the counterclockwise oriented circle of radius 2, centered at 0 . Compute $\int_{C} \frac{e^{\pi z}}{z\left(z^{2}+1\right)} d z$.

$$
\begin{aligned}
\int_{C} \frac{e^{\pi z}}{z\left(z^{2}+1\right)} d z & =2 \pi \mathbf{i}\left(\operatorname{Res}_{z=0}\left(\frac{e^{\pi z}}{z\left(z^{2}+1\right)}\right)+\operatorname{ReS}_{z=\mathbf{i}}\left(\frac{e^{\pi z}}{z\left(z^{2}+1\right)}\right)+\operatorname{Res}_{z=-\mathbf{i}}\left(\frac{e^{\pi z}}{z\left(z^{2}+1\right)}\right)\right) \\
& =2 \pi \mathbf{i}\left(\left[\frac{e^{\pi z}}{z^{2}+1}\right]_{\operatorname{Set} z=0}+\left[\frac{e^{\pi z}}{z(z+\mathbf{i})}\right]_{\text {Set } z=\mathbf{i}}+\left[\frac{e^{\pi z}}{z(z-\mathbf{i})}\right]_{\text {Set } z=-\mathbf{i}}\right) \\
& =2 \pi \mathbf{i}\left(1+\frac{-1}{\mathbf{i}(2 \mathbf{i})}+\frac{-1}{-\mathbf{i}(-2 \mathbf{i})}\right) \\
& =4 \pi \mathbf{i}
\end{aligned}
$$

(26.5) Meromorphic functions.- A function f is called meromorphic ${ }^{1}$ on an open set $\Omega \subset \mathbb{C}$, if there exists a subset $A \subset \Omega$ such that:

- $f: \Omega \backslash A \rightarrow \mathbb{C}$ is holomorphic.
- Every $\alpha \in A$ is either a removable singularity, or a pole of f (that is, f is not allowed to have essential singularities in Ω).

Example. Every holomorphic function is also meromorphic, with $A=\emptyset . \operatorname{cosec}(z)$ and $\cot (z)$ are meromorphic functions on \mathbb{C}, with $A=\{n \pi: n \in \mathbb{Z}\}$. $e^{1 / z}$ is not meromorphic on \mathbb{C} (though it is holomorphic on $\mathbb{C} \backslash\{0\}$, it has an essential singularity at 0).

A rational function, for instance $f(z)=\frac{z^{3}+z+3}{z^{5}-1}$, is meromorphic on \mathbb{C} (in the example, $f(z)$ has poles at the fifth roots of unity).

[^0]The following notation is sometimes used for meromorphic functions: $f: \Omega \rightarrow \mathbb{C}$ to indicate that f may not be defined on a subset $A \subset \Omega$. I am going to assume that every point of A is a pole (by including removable singularities in the domain of f). A pole is always isolated, so the set A itself has to be discrete (meaning, for every $\alpha \in A$, there exists $r \in \mathbb{R}_{>0}$ such that the punctured disc around α of radius r does not intersect A : $\left.D^{\times}(\alpha ; R) \cap A=\emptyset\right)$. This leads to the following important property of meromorphic functions.

Proposition. Let $K \subset \mathbb{C}$ be a closed and bounded (in other words, compact) set, such that $K \subset \Omega$. Then $K \cap A$ is finite.

Proof. This is an application of Bolzano-Weierstrass theorem ${ }^{2}$: an infinite collection of points in a compact set always have a cluster point. More precisely, if $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ is contained in a compact set K, then there exists $\alpha \in K$ with the property that for every $r>0$, there are infinitely many $\alpha_{n}^{\prime} s$ with $\left|\alpha-\alpha_{n}\right|<r$.

Assume, for the sake of obtaining a contradiction, that $K \cap A$ is infinite. By BolzanoWeierstrass theorem, we will have a point $\alpha \in K \subset \Omega$, such that for every $r>0, D^{\times}(\alpha ; r) \cap$ $A \neq \emptyset$. This α is then a non-isolated, hence essential singularity of f (see $\S 26.3$ above). This contradicts the assumption that f is meromorphic (f is not allowed to have essential singularities in Ω).
(26.6) Application 1: sum of residues. - Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a meromorphic function. Assume that ∞ is an isolated singularity of f.

This means that there is a number $R \in \mathbb{R}_{>0}$ so that f is defined and holomorphic on the open set $\{z \in \mathbb{C}:|z|>R\}$ (see $\S 26.1$ above). Hence, all the singularities (which are necessarily poles since f is meromorphic) are contained in the compact set $K=\{z \in \mathbb{C}:|z| \leq R\}$. Therefore, by Proposition 26.5 above, there are only finitely many of them, say $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$.

Cauchy's residue theorem (§26.4), and the definition of $\operatorname{Res}_{z=\infty}(f(z))$ (§26.2) imply:

$$
\sum_{j=1}^{n} \operatorname{Res}_{z=\alpha_{j}}(f(z))+\operatorname{Res}_{z=\infty}(f(z))=0
$$

(26.7) Application 2: entire functions with a pole at ∞.- The following argument is a mild generalization of the one we saw in the proof of Liouville's theorem (Lecture 18, §18.2, page 3).

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function defined on the entire complex plane (such functions are called entire functions). Assume that f has a pole of order N at ∞.

Claim. f is a polynomial of degree N.

[^1]Proof. Let us take the Taylor series expansion of f near 0: $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$. As f is entire, the radius of convergence of this series is ∞, by Theorem (23.4) of Lecture 23.

As f has a pole of order N at ∞, by the exercise given in $\S 26.1$ above, $\lim _{z \rightarrow \infty} z^{-N} f(z)$ exists and is non-zero. In particular it implies, by definition of the limit, that there is a number $R \in \mathbb{R}_{>0}$, and a constant $M \in \mathbb{R}_{>0}$ so that

$$
\left|z^{-N} f(z)\right|<M \text { for every } z \in \mathbb{C} \text { such that }|z|>R .
$$

The coefficients of the Taylor series of $f(z)$ can be computed as follows. Take any $\rho>0$, and let C_{ρ} be the counterclockwise circle of radius ρ centered at 0 . Then:

$$
a_{k}=\frac{1}{2 \pi \mathbf{i}} \int_{C_{\rho}} \frac{f(z)}{z^{k+1}} d z .
$$

(we can take $\rho>0$ to be as large as we want, since f is defined on the entire complex plane).
Now, taking $\rho>R$, we can estimate $\left|a_{k}\right|$ for $k \geq N+1$, using the bound of $\left|z^{-N} f(z)\right|$ written above, and our important inequality (see Lecture $12, \S 12.7$, page 9). For every $\ell \geq 0$:

$$
\left|a_{N+1+\ell}\right|=\left|\frac{1}{2 \pi \mathbf{i}} \int_{C_{\rho}} \frac{f(z)}{z^{N+\ell+2}} d z\right|<\frac{1}{2 \pi} \frac{M}{\rho^{\ell+2}} 2 \pi \rho=\frac{M}{\rho^{\ell+1}}
$$

As $\frac{M}{\rho^{\ell+1}} \rightarrow 0$ as $\rho \rightarrow \infty$, we conclude that $\left|a_{N+1+\ell}\right|=0$ for every $\ell \geq 0$. Hence, $f(z)=a_{0}+a_{1} z+\cdots+a_{N} z^{N}$ is a polynomial.

Note that $\lim _{z \rightarrow \infty} z^{-N} f(z)=a_{N}$ which was assumed to be non-zero. Hence degree of f is precisely N.

(26.8) Meromorphic functions on \mathbb{C} with a pole at ∞.-

Theorem. Let us assume that we have a meromorphic function $f: \mathbb{C} \rightarrow \mathbb{C}$ which has a pole at ∞ (in particular, ∞ is an isolated singularity of f).

Then, $f(z)$ is a rational function.
Proof. Using the argument given in $\S 26.6$ above, we know f will only have finitely many poles $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\} \subset \mathbb{C}$. For any $1 \leq j \leq n$, we have the Laurent series expansion of f near α_{j} (remember: it is a pole, say of order N_{j}):

$$
f(z)=\frac{d_{N_{j}}^{(j)}}{\left(z-\alpha_{j}\right)^{N_{j}}}+\cdots+\frac{d_{1}^{(j)}}{z-\alpha_{j}}+\sum_{k=0}^{\infty} c_{k}^{(j)}\left(z-\alpha_{j}\right)^{k} .
$$

Let us define:

$$
R_{j}(z)=\frac{d_{N_{j}}^{(j)}}{\left(z-\alpha_{j}\right)^{N_{j}}}+\cdots+\frac{d_{1}^{(j)}}{z-\alpha_{j}}
$$

Then, each $R_{j}(z)$ is a rational function, with only pole at α_{j}. Moreoever, $\lim _{z \rightarrow \infty} R_{j}(z)=0$.
Let us define $g(z)=f(z)-\sum_{j=1}^{n} R_{j}(z)$.
Claim. $g(z)$ is holomorphic on the entire complex plane.
Let us assume this claim to be true and proceed with the proof of the theorem. Note that if $f(z)$ has a pole of order N at ∞, then so does $g(z)$. This is because $\lim _{z \rightarrow \infty} z^{-N} R_{j}(z)=0$, for every j, and therefore $\lim _{z \rightarrow \infty} z^{-N} g(z)=\lim _{N \rightarrow \infty} z^{-N} f(z)$. Hence $g(z)$ is a polynomial of degree N, by $\S 26.7$ above. We can now conclude that $f(z)=g(z)+\sum_{j=1}^{n} R_{j}(z)$ is a rational function, being a sum of a polynomial and finite number of rational functions.

Proof of the claim. For $w \in \mathbb{C}, w \notin\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$, it is clear that g is holomorphic at w (since f and $R_{j}^{\prime} s$ are). So, let us consider the situation near $w=\alpha_{j}(j \in\{1,2, \ldots, n\})$. Each $R_{\ell}(z)$, with $\ell \neq j$, is holomorphic at α_{j}, since the only singularity of R_{ℓ} is α_{ℓ}. Moreover, near α_{j}, we have the following expansion $f(z)-R_{j}(z)=\sum_{k=0}^{\infty} c_{k}^{(j)}\left(z-\alpha_{j}\right)^{k}$, which means α_{j} is a removable singularity of $f(z)-R_{j}(z)$. Hence we conclude that

$$
g(z)=f(z)-R_{j}(z)-\sum_{\substack{\ell=1 \\ \ell \neq j}}^{n} R_{\ell}(z) \text { is holomorphic at } \alpha_{j} .
$$

So $g(z)$ has no singularities in the entire complex plane. The claim follows.

[^0]: ${ }^{1}$ Greek: holo $=$ whole/entire, mero $=$ part. This is to highlight that f is only defined on a part of Ω.

[^1]: ${ }^{2}$ A proof of Bolzano-Weierstrass theorem (over \mathbb{R}) is given in Optional Reading A, §A.2. I will leave it to you (if you are interested) to carry out the proof over \mathbb{C} - hint: use the version over \mathbb{R} for the real and imaginary parts.

