COMPLEX ANALYSIS: LECTURE 26

(26.0) .— Recall that we defined Res (f(2)) for an isolated singularity o € C of a function

f. Thus, f is defined, and holomorphic on the punctured disc of some radius R € R,
f:D*(a; R) — C. (Recall: D*(a;R) ={2z€C:0< |z—a|] <R}

Let v be a positively oriented contour such that (i) o € Interior(v), and (ii) Interior(y)\{a}
and 7 itself are in the domain of f. Then,

zZ=x

Res (7(2) = 55 [ £:)d:

We saw in Lecture 25, §25.7, that if « is a pole of f, we can use Cauchy’s integral formula
to compute the residue. In any case (whether « is a pole or essential singularity), we have:
Res (f(2)) = coefficient of (2 — «)~! in the Laurent series expansion of f near a.

Z=x

(26.1) The point at co.— There is nothing special here. The behaviour of a function f(z)

near z = oo is investigated by performing the change of variables z = — and studying the
w

1
point w =0 of f ( ) In more detail:

w
(1) z = o0 is a singularity of f(z) if w = 0 is a singularity of f <—)
w
1
(2) Singularity at z = oo of f(z) is isolated if w = 0 is an isolated singularity of f (—)
w
(3) z = oo is a removable singularity, a pole, or an essential singularity of f(z) if so is

w:Ooff(%).

1
Ezamples. (1) € has an essential singularity at co. (2) f(z) = i

2 _
singularity at co. (3) Let P(z) be a polynomial of degree n. Then P(z) has a pole of order
n at oo (see §26.7 for a converse to this statement).

has a removable

The following exercise is given here for you to get used to the statements written above.

Fxercise. Let f : @ — C be a holomorphic function, defined on an open set 2. Prove
that oo is an isolated singularity of f if, and only if there is a number R € R, such that
{z € C:|z] > R} C Q. In this case, verify the following assertions:

1



2 LECTURE 26

(1) f(z) has a removable singularity at oo if, and only if lim f(z) exists.
Z—00

(2) f(2) has a pole of order N at oo if, and only if lim 2~ f(z) exists, and is non-zero.
Z—00

(26.2) Residue at co.— Again, assume that oo is an isolated singularity of f. Meaning, there
is a number R € R so that f is defined (and holomorphic, as always) on {z € C: |z| > R}.
Thus, all the singularities of f are contained in the closed disc: D(0; R) = {z € C: |z| < R}.

Let v be a clockwise oriented contour, large enough so as to have all the singularities of f
in the interior of 7. For instance, pick a number p > R and let v = —C), be the clockwise
oriented circle of radius p, centered at 0. We define:

~ 2mi

Res (£(:)) = 57 [ )22

Remark. In the definition of Res (f(z)), the contour used is negatively oriented. The reason

is - as one travels along ~, the point at co should be to the left. I always use the notation C'
for counterclockwise oriented circles, that is why there is a minus sign in v = —C,.

The relation between residue of f(z) at oo, and the residue of f(w™') at 0 is obtained

as follows. Upon the change of variables w = 27!, we get dw = —z %dz = —w?*dz. Thus
dw
dz = —F

Moreover (easy check) as z moves over —C,, (clockwise circle of radius p, centered at 0),
w = z~! moves over C,-1 (counterclockwise circle of radius p~!, centered at 0). This gives:

(—1)dw

fea:= [ 1)
—C, C,
Hence we arrive at the following identity.

Res (f(2)) = —Res (w™f (w™))

322 +1
(z—1)(22 — 1)
z=1and z = 1/2. Let us compute its residue at co in two different ways.

(i) Directly from the definition. Take p = 2 (anything bigger than 1 will suffice), and let C,
be the counterclockwise circle of radius p, centered at 0. I will leave the following calculation
to you (it actually follows easily from a result that we proved in Lecture 19, §19.5, page 7).

1 3
2_7'(‘i\/cpf(z)dZ:Z

It only has poles at

Example. Let us take a rational function f(z) =

Hence Res (f(z)) = —-.

2=00 4



LECTURE 26 3

(ii) Using the change of variables z = w™!.

Fw) = 3w ?+1 _ w(3 + w?)
(wt=1)2w -1 (1—-w)(2—w)?*
Now we use Res (f(z)) = —RS(S] (w™?f(w™")) to carry out the calculation. Let C' be a small

enough counterclockwise circle centered at 0 (small enough = radius < 1).

1 3+w? 3+ w? 3
Res U =55, witr o~ [0 ey

(26.3) A word on the non-isolated case.— Recall that an example of a non-isolated
singularity was given in Lecture 24, §24.2: f(z) = cosec (z’l). The set of singularities is
{-L:n € Zs}U{0}, and 0 is not isolated. Meaning, no matter how small radius r > 0 we

pick, the disc D(0;7) will contain a singularity other than 0 (in fact, infinitely many).

In general, o € C is a non-isolated singularity of f, if there exists a sequence {a,}2, of
complex numbers such that:

e Each «,, is a non—removable singularity of f (it could be a pole, or an essential sin-
gularity).

e lim o, = .
n—oo
Note that in this case a cannot be removable, or a pole - if it were there would exist some
positive real number r € R such that f is defined on the punctured disc D*(«;r) (see, for
instance, Lecture 25, §25.4). The existence of such r will contradict the fact that o, — « as
n — oo.

Hence, non—isolated singularities can only be essential.
(26.4) Cauchy’s residue theorem.— Let f be a holomorphic function, and 7 be a positively

oriented contour. Assume that there are finitely many points oy, o, ..., @, € Interior(y)
such that Interior(y) \ {aq, s, ..., a,} and 7 itself are in the domain of f.

FI1GURE 1. f is a holomorphic function defined on an open set, which contains
~ and Interior(y) \ {a1, ag, ..., a,}.
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Theorem.

1

gri ] )42 = 3 Ren (4(2)

Proof. The proof of this theorem is based on the principle of contour deformation (Lecture
16, §16.1). Namely, let C; be a small enough, counterclockwise oriented circle, around o
such that, for k # j, oy is not on, or in the interior of C; (see Figure 1 above). By the
principle of contour deformation:

i [ 10 = 3 5 [ 10as = 3 Res (460,

The last equality is by definition of the residue. O

Example. Let C be the counterclockwise oriented circle of radius 2, centered at 0. Compute

eﬂ'Z
—dz.
/Cz(z2 +1) i

671'2 eﬂ'z 671"25 671'2
—  dz=2mi(Res(——— ) +Res(———— ) + Res [ ———
/cz<z2+1> P ( (z<z2+1>) =i (z<22+ 1>) TS (z<z2+1>)>
oni ()t e o) )
=27
22_'_1 Set 2=0 Z<Z+l> Set z=i ’Z(Z_i) Set z=—i

— ori (1 + i(;) + —i(_—12i))

= 47i.

(26.5) Meromorphic functions.— A function f is called meromorphic * on an open set
Q C C, if there exists a subset A C {2 such that:

o [:Q\ A— C is holomorphic.

e Every a € A is either a removable singularity, or a pole of f (that is, f is not allowed
to have essential singularities in €2).

Example. Every holomorphic function is also meromorphic, with A = (). cosec(z) and
cot(z) are meromorphic functions on C, with A = {n7 :n € Z}. €'/# is not meromorphic on
C (though it is holomorphic on C\ {0}, it has an essential singularity at 0).

: : : 24243 : :
A rational function, for instance f(z) = —5_7 S meromorphic on C (in the example,

5
f(2) has poles at the fifth roots of unity).

1Greek: holo = whole/entire, mero = part. This is to highlight that f is only defined on a part of Q.
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The following notation is sometimes used for meromorphic functions: f : Q --» C to
indicate that f may not be defined on a subset A C €. T am going to assume that every
point of A is a pole (by including removable singularities in the domain of f). A pole is always
isolated, so the set A itself has to be discrete (meaning, for every a € A, there exists 7 € R.q
such that the punctured disc around « of radius r does not intersect A: D*(a; R) N A = ().
This leads to the following important property of meromorphic functions.

Proposition. Let K C C be a closed and bounded (in other words, compact) set, such that
K C Q. Then KN A is finite.

Proof. This is an application of Bolzano-Weierstrass theorem? : an infinite collection of
points in a compact set always have a cluster point. More precisely, if {a, }22, is contained
in a compact set K, then there exists a € K with the property that for every » > 0, there
are infinitely many o/ s with | — a,,| < r.

Assume, for the sake of obtaining a contradiction, that K N A is infinite. By Bolzano—
Weierstrass theorem, we will have a point a« € K C Q, such that for every r > 0, D*(a;7) N
A # (. This « is then a non-isolated, hence essential singularity of f (see §26.3 above).
This contradicts the assumption that f is meromorphic (f is not allowed to have essential
singularities in 2). O

(26.6) Application 1: sum of residues.— Let f : C --» C be a meromorphic function.
Assume that oo is an isolated singularity of f.

This means that there is a number R € R so that f is defined and holomorphic on the
open set {z € C: |z| > R} (see §26.1 above). Hence, all the singularities (which are neces-
sarily poles since f is meromorphic) are contained in the compact set K = {z € C: |z| < R}.
Therefore, by Proposition 26.5 above, there are only finitely many of them, say aq, s, . . ., .

Cauchy’s residue theorem (§26.4), and the definition of Res (f(z)) (§26.2) imply:

Z=00

>~ Res (£(2)) + Res (£(2)) =0

(26.7) Application 2: entire functions with a pole at co.— The following argument
is a mild generalization of the one we saw in the proof of Liouville’s theorem (Lecture 18,
§18.2, page 3).

Let f : C — C be a holomorphic function defined on the entire complex plane (such
functions are called entire functions). Assume that f has a pole of order N at oc.

Claim. f is a polynomial of degree N.

2A proof of Bolzano—~Weierstrass theorem (over R) is given in Optional Reading A, §A.2. T will leave it
to you (if you are interested) to carry out the proof over C - hint: use the version over R for the real and
imaginary parts.
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o0

Proof. Let us take the Taylor series expansion of f near 0: f(z) = Z apz®. As f is entire,
k=0
the radius of convergence of this series is oo, by Theorem (23.4) of Lecture 23.

As f has a pole of order N at oo, by the exercise given in §26.1 above, lim 2z~ f(z) exists
Z—00
and is non—zero. In particular it implies, by definition of the limit, that there is a number
R € Ry, and a constant M € R so that
|27V f(2)| < M for every z € C such that |z| > R.

The coefficients of the Taylor series of f(z) can be computed as follows. Take any p > 0,
and let C, be the counterclockwise circle of radius p centered at 0. Then:

e,

3 k+1
271 C, z

ap =

(we can take p > 0 to be as large as we want, since f is defined on the entire complex plane).

Now, taking p > R, we can estimate |a;| for k¥ > N + 1, using the bound of |27V f(2)|
written above, and our important inequality (see Lecture 12, §12.7, page 9). For every ¢ > 0:

1 f(z) 1 M M
lans14e] = i o 2N+ dz| < %W%/): F
P
M
As —— — 0 as p — oo, we conclude that |ayii4¢] = 0 for every £ > 0. Hence,

Pl
f(z) =ao+arz+---+aynz" is a polynomial.

Note that lim 27" f(2) = ay which was assumed to be non-zero. Hence degree of f is
Z—r00

precisely N. 0

(26.8) Meromorphic functions on C with a pole at co.—

Theorem. Let us assume that we have a meromorphic function f : C --» C which has a
pole at oo (in particular, oo is an isolated singularity of f).

Then, f(z) is a rational function.

Proof. Using the argument given in §26.6 above, we know f will only have finitely many
poles {ay, aq,...,an,} C C. For any 1 < j < n, we have the Laurent series expansion of f
near «; (remember: it is a pole, say of order N;):

! d(ﬂ >
_ J .. J _
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Let us define:

d%? qv)
Ri(z)= — 29 4 ... LS
=G T i,
Then, each R;(z) is a rational function, with only pole at «;. Moreoever, lim R;(z) = 0.
Z—r00
Let us define g(z Z Ri(

Claim. g(z) is holomorphic on the entire complex plane.

Let us assume this claim to be true and proceed with the proof of the theorem. Note that
if f(z) has a pole of order N at oo, then so does g(z). This is because lim 2~V R;(2) = 0, for

Z—00
—-N

every j, and therefore lim 27" g(z) = Nlim 2N f(2). Hence g(z) is a polynomial of degree
Z2—r00 —00

N, by §26.7 above. We can now conclude that f(z z)+ Z R;(z) is a rational function,

being a sum of a polynomial and finite number of rational functlons

Proof of the claim. For w € C, w € {1, ag,...,a,}, it is clear that g is holomorphic at w
(since f and R)s are). So, let us consider the situation near w = a; (j € {1,2,...,n}). Each
Ry(z), with ¢ # j, is holomorphic at «;, since the only singularity of R, is ap. Moreover,

near «;, we have the following expansion f(z) Z o (z — , which means «;
is a removable singularity of f(z) — R;(z). Hence we conclude that
9(z) = f(2) — Rj(2) — Z Ry(z) is holomorphic at «; .

=1
]
So ¢g(z) has no singularities in the entire complex plane. The claim follows. 0



