
COMPLEX ANALYSIS: LECTURE 27

(27.0) Residue theorem - review.– In these notes we are going to use Cauchy’s residue
theorem to compute some real integrals. Let us recall the statement of this theorem. We
are given a holomorphic function f (on some open set - domain of f), a counterclockwise
oriented contour γ, and a finite collection of points α1, α2, . . . , αn ∈ Interior(γ). This data
is supposed to satisfy the following assumption (see Figure 1 below).

The set Interior(γ) \ {α1, . . . , αn}, and the contour γ itself are both in the domain of f .

Figure 1. f is a holomorphic function defined on an open set, which contains
γ and Interior(γ) \ {α1, α2, . . . , αn}.

The residue theorem is just a combination of the principle of contour deformation and the
definition of residue at an isolated singularity. It says:∫

γ

f(z) dz = 2πi
n∑
j=1

Res
z=αj

(f(z))

(27.1) Applications to real integrals.– There are four types of real integrals which we
are going to try to compute with the help of the residue theorem. These notes contain the
first two classes of examples (other two will be in Lecture 28).

Class I.

∫ 2π

0

R(cos(θ), sin(θ)) dθ. Here the integrand is usually a rational expression involv-

ing cos(θ) and sin(θ) which remains finite within the limits of integration.

Method. We make the change of variables: z = eiθ, so that dz = ieiθdθ. This transforms our
(real, definite) integral to contour integration, over C : the counterclockwise oriented circle
of radius 1, centered at 0.

cos(θ) 7→ z + z−1

2
, sin(θ) 7→ z − z−1

2i
, dθ 7→ 1

iz
dz .

1
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0

R(cos(θ), sin(θ)) dθ =

∫
C

R

(
z + z−1

2
,
z − z−1

2i

)
1

iz
dz

The contour integral on the right–hand side of the equation above can be computed using
the residue theorem (see Examples given in §27.2, 27.3 below).

Class II. P.V.

∫ ∞
−∞

Q(x) dx, defined as lim
R→∞

∫ R

−R
Q(x) dx.

Remark. The prefix P.V. stands for principal value. Without this prefix, the integral∫ ∞
−∞

Q(x) dx is defined as: ∫ ∞
−∞

Q(x) dx = lim
R1→∞
R2→∞

∫ R1

−R2

Q(x) dx.

The two are not the same, in general. For instance P.V.

∫ ∞
−∞

x dx = 0, while

∫ ∞
−∞

x dx does

not exist 1.

The method given below computes the principal value integral only. In most of our exam-

ples, Q(x) will be an even function. For such functions P.V.

∫ ∞
−∞

Q(x) dx =

∫ ∞
−∞

Q(x) dx.

Method. For problems of this type, we let CR be the counterclockwise contour consisting of
two smooth parts: µR = the straightline joining −R to R, and γR = semicircle in the upper
half of the complex plane, joining R to −R (see Figure 2 below). Then:∫ R

−R
Q(x) dx =

∫
µR

Q(z) dz =

∫
CR

Q(z) dz −
∫
γR

Q(z) dz.

Figure 2. Contour CR consisting of two parts: straight line segment µR and
a semicircle γR

1
∫ ∞
−∞

Q(x) dx exists if, and only if both

∫ 0

−∞
Q(x) dx and

∫ ∞
0

Q(x) dx exist individually, in which case:∫ ∞
−∞

Q(x) dx =

∫ 0

−∞
Q(x) dx+

∫ ∞
0

Q(x) dx.
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Thus, if Q(z) satisfies the following two conditions:

• Q(z) has only finitely many singularities, say α1, α2, . . . , αn in the upper half of the
complex plane, and none on the real axis.
Hence, when R > |αj|, for every j = 1, . . . , n, residue theorem implies:∫

CR

Q(z) dz = 2πi
n∑
j=1

Res
z=αj

(Q(z)) .

• lim
R→∞

∫
γR

Q(z) dz = 0.

(This is going to involve the kind of argument we saw for example in HW 5, prob-
lem 12; Mid Term 2, problem 2. These arguments were based on finding a bound
on the function, and using our important inequality. See examples §27.4, 27.5 below.)

Then, we will be able to conclude that

P.V.

∫ ∞
−∞

Q(x) dx = 2πi
n∑
j=1

Res
z=αj

(Q(z))

(27.2) Example 1.– Let 0 < a < 1. Compute

∫ 2π

0

1

1 + a sin(θ)
dθ.

Solution. Set z = eiθ, so that sin(θ) =
z − z−1

2i
and dθ =

1

iz
dz. Our integral becomes:∫ 2π

0

1

1 + a sin(θ)
dθ =

∫
C

1

1 + a
(
z−z−1

2i

) 1

iz
dz.

where, C is the circle of radius 1, centered at 0.

Figure 3. α1 ∈ Interior(C) and α2 ∈ Exterior(C).

We begin by simplifying the function we have to integrate.

1

iz
(
1 + a

(
z−z−1

2i

)) =
2

az2 + 2iz − a
.
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Solving the quadratic equation az2 + 2iz − a = 0, we get two solutions α1 and α2: az
2 +

2iz − a = a(z − α1)(z − α2) where,

α1 = i

√
1− a2 − 1

a
, α2 = i

−
√

1− a2 − 1

a
.

Since 0 < a < 1, we get that |α2| =
1 +
√

1− a2
a

> 1. As α1α2 = −1 (set z = 0 in

az2− 2iz− a = a(z−α1)(z−α2)), |α1| < 1. So, of the two singularities, α1 is within C and
α2 is outside of C (see Figure 3 above).

Now we can finish the computation, as follows.∫
C

2

a(z − α1)(z − α2)
dz = 2πi

2

a(α1 − α2)
=

4πi

a · 2i
√
1−a2
a

=
2π√

1− a2
.

(27.3) Example 2.– Let 0 < p < 1. Compute

∫ 2π

0

1

1− 2p cos(θ) + p2
dθ.

Solution. Again, we substitute z = eiθ, turning cos(θ) =
z + z−1

2
and dθ =

1

iz
dz. C is again

the counterclockwise circle of radius 1, centered at 0. Thus,∫ 2π

0

1

1− 2p cos(θ) + p2
dθ =

∫
C

1

1− 2p
(
z+z−1

2

)
+ p2

1

iz
dz.

Figure 4. p ∈ Interior(C) and
1

p
∈ Exterior(C).

Simplify the function to be integrated first:

1

iz
(
1− 2p

(
z+z−1

2

)
+ p2

) =
1

i(z − pz2 − p+ p2z)
=

1

i(1− pz)(z − p)
.

Thus the two singularities of this function are z = p (within C) and z = 1
p

(outside of C) -

see Figure 4 above. Hence,∫
C

1

i(z − p)(1− pz)
dz = 2πi

1

i(1− p2)
=

2π

1− p2
.
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(27.4) Example 3.– Compute

∫ ∞
−∞

1

(x2 + 1)3
dx.

Solution. Note that
1

(x2 + 1)3
is an even function of x. So, there is no difference between

P.V.
∫∞
−∞ and

∫∞
−∞.

Let R > 1 and consider the contour CR as shown in Figure 5 below.

Figure 5. CR consists of a straight line and a semicircle. With R > 1,
i ∈ Interior(C) and −i ∈ Exterior(C).

The contour integral is now easy to compute, using Cauchy’s integral formula:∫
CR

dz

(z2 + 1)3
=

∫
CR

dz

(z − i)3(z + i)3
= 2πi

1

2!

[
d2

dz2

(
1

(z + i)3

)]
Set z=i

=
3π

8
.

While, for z on γR, we have the following inequality: (see Lecture 2, §2.6, page 6).

|z2 + 1| ≥ |z|2 − 1 = R2 − 1⇒
∣∣∣∣ 1

(z2 + 1)3

∣∣∣∣ ≤ 1

(R2 − 1)3
.

Therefore, using our important inequality (Lecture 12, §12.7):∣∣∣∣∫
γR

1

(z2 + 1)3
dz

∣∣∣∣ ≤ 1

(R2 − 1)3
· πR→ 0 as R→∞.

Hence lim
R→∞

∫
γR

1

(z2 + 1)3
dz = 0, and we get the answer:

∫ ∞
−∞

1

(x2 + 1)3
dx = lim

R→∞

(∫
CR

1

(z2 + 1)3
dz −

∫
γR

1

(z2 + 1)3
dz

)
=

3π

8
.

(27.5) Example 4.– Compute

∫ ∞
0

1

x6 + 1
dx.
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Solution. Again, the function is even, so we have∫ ∞
0

1

x6 + 1
dx =

1

2
P.V.

∫ ∞
−∞

1

x6 + 1
dx.

Now there are six solutions to z6 + 1 = 0, three above the real line and three below (see
Lecture 2, page 4 - where we studied this for the first time).

α1 = ei
π
6 , α2 = ei

π
2 = i, α3 = ei

5π
6 = −e−i

π
6 .

β1 = e−i
π
6 = α1, β2 = e−i

π
2 = −i, β3 = e−i

5π
6 = α3.

(see Figure 6 below).

Figure 6. The contour CR encloses α1, α2, α3. The other three solutions to
z6 = −1 are in the lower half plane.

Again there are two steps to the problem. I am going to leave it to you to prove that

lim
R→∞

∫
γR

1

z6 + 1
dz = 0. The computation of the residues is a bit long, and given below.

∫
CR

1

z6 + 1
dz = 2πi

(
Res
z=α1

(
1

z6 + 1

)
+ Res

z=α2

(
1

z6 + 1

)
+ Res

z=α3

(
1

z6 + 1

))
.

Now each of these singularities is a pole of order 1. This allows us to compute the residue
as follows:

Res
z=α1

(
1

z6 + 1

)
= lim

z→α1

z − α1

z6 + 1
= lim

z→α1

1

6z5
=

1

6α5
1

(using l’hôpital rule).

Using α6
1 = −1, we get Res

z=α1

(
1

z6 + 1

)
= −α1

6
. Note that:

α1 + α3 = ei
π
6 − e−i

π
6 = 2i sin(π/6) = i.∫

CR

1

z6 + 1
dz = −2πi

α1 + α2 + α3

6
= −2πi

2i

6
=

2π

3
.

Hence

∫ ∞
0

1

x6 + 1
dx =

1

2
lim
R→∞

(∫
CR

1

z6 + 1
dz −

∫
γR

1

z6 + 1
dz

)
=
π

3
.


