
COMPLEX ANALYSIS: LECTURE 28

(28.0) Review..– Recall that in Lecture 27, we studied two types of real integrals which
can be computed using residues.

Class I.

∫ 2π

0

R(cos(θ), sin(theta)) dθ.

Class II. P.V.

∫ ∞
−∞

Q(x) dx.

In these notes we are going to take up two more types of examples.

Class III. Let m ∈ R>0. The following integrals are often computed using Jordan’s lemma
(see §28.1 and the example from §28.2 below).

P.V.

∫ ∞
−∞

cos(mx)Q(x) dx and P.V.

∫ ∞
−∞

sin(mx)Q(x) dx

The basic idea behind this type is still the one from Lecture 27, §27.4, §27.5. Here we merely
notice that the two integrals written above are (respectively) the real and imaginary parts

of P.V.

∫ ∞
−∞

eimxQ(x) dx.

We will integrate eizQ(z) over the contour CR which consists of the straight line µR joining
−R to R, and the semicircle in the upper half plane γR, of radius R centered at 0 (see Figure

4 below). Jordan’s lemma is need to conclude that lim
R→∞

∫
γR

eimzQ(z) dz = 0.

Class IV. In case Q(z) has a pole (of order 1) on the real line, we will have to indent the
contour, to avoid that point. See Figure 1 below, where 0 is avoided by going over it.

Figure 1. Contour Cr,R consists of 4 smooth pieces: counterclockwise semi-
circle γR followed by straight line L1, clockwise semicircle −γr and another
straight line L2.

The outline for solving such problems is given in §28.3 below. To deal with the limit
r → 0, we are going to prove a technical lemma in §28.4. An example of such type is given
in §28.5.
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2 LECTURE 28

(28.1) Jordan’s lemma.– 1

Lemma. Let m ∈ R>0. Let Q(z) be a holomorphic function satisfying the following proper-
ties.

• There is a positive real number R0 ∈ R>0 such that the set {z ∈ C : Im(z) ≥
0 and |z| > R0} is in the domain of Q. See Figure 2 below.

Figure 2. Domain of Q(z) contains the set |z| > R0 and Im(z) ≥ 0.

• For every R > R0, let γR be the semicircle in the upper half plane, of radius R, cen-
tered at 0. Then, there is a constant MR (depending on R) such that |Q(z)| < MR

for every z on the semicircle γR. Moreover, lim
R→∞

MR = 0.

Then,

lim
R→∞

∫
γR

eimzQ(z) dz = 0

Proof. The proof of this lemma is based on the following inequality.

Claim. For every 0 ≤ θ ≤ π

2
, we have sin(θ) ≥ 2θ

π
.

Assuming this, we can finish the proof of the lemma as follows. Note that for z = γR(θ) =
R(cos(θ) + i sin(θ)), we have: |eimz| = e−mR sin(θ). Using this, we can bound the integral over

γR, starting from the definition

∫
γ

f(z) dz =

∫ π

0

f(γ(θ))γ′(θ) dθ:

1Camille Jordan (1838-1922) Cours d’Analyse II (1894).
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∣∣∣∣∫
γR

eimzQ(z) dz

∣∣∣∣ =

∣∣∣∣∫ π

0

eimR(cos(θ)+i sin(θ))Q(Reiθ)iReiθdθ

∣∣∣∣
< MRR

∫ π

0

e−mR sin(θ) dθ (since |Q(Reiθ)| < MR)

= 2MRR

∫ π
2

0

e−mR sin(θ) dθ (since sin(θ) = sin(π − θ))

≤ 2MRR

∫ π
2

0

e−mR
2θ
π dθ (using the inequality written above)

= 2MRR

[
−πe

−2mR θ
π

2mR

]π
2

θ=0

=
πMR

m

(
1− e−mR

)
.

Now, by the assumption lim
R→∞

MR = 0, we get that lim
R→∞

πMR

m

(
1− e−mR

)
=
π

m
lim
R→∞

MR =

0. The lemma is proved, except for the claimed inequality.

Figure 3. For 0 < x <
π

2
, area of the shaded region =

x

2
< area of the

triangle =
tan(x)

2
.

Proof of the claim. It is perhaps easy to draw the graph of y = sin(x) and y =
2x

π
, to see

this inequality. Alternately, we can show that f(x) =
sin(x)

x
is a decreasing function of x,

for 0 ≤ x ≤ π/2, by showing that f ′(x) < 0 for 0 < x < π/2. This will imply that the

smallest value f(x) takes is at x = π/2, hence sin(x)
x
≥ 2

π
for every x ∈ [0, π/2].

Now, for x ∈ (0, π/2), f ′(x) =
x cos(x)− sin(x)

x2
=

cos(x)

x2
(x − tan(x)). As

cos(x)

x2
> 0,

and x− tan(x) < 0 (see Figure 3 above), we conclude that f ′(x) < 0.

�

(28.2) Example 1.– Let us compute the integral

∫ ∞
0

x sin(x)

x2 + a2
dx, where a ∈ R>0.
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The idea is essentially same as the one from Lecture 27, §27.4 and §27.5. The only differ-
ence is that now we change sin(x) to the imaginary part of eix.

Consider the following contour integral

∫
CR

zeiz

z2 + a2
dz. The contour CR is same as the

one from Lecture 27, and is shown in Figure 4 below.

Figure 4. Contour CR

1. By Cauchy’s integral formula

∫
CR

zeiz

(z + ai)(z − ai)
dz = 2πi

aie−a

2ai
= πie−a.

2. We are going to apply Jordan’s lemma from §28.1 above, to Q(z) =
z

z2 + a2
(with m = 1).

Clearly the set {z ∈ C : |z| > a} is in the domain of this function. On γR, this function is

bounded by

∣∣∣∣ z

z2 + a2

∣∣∣∣ < R

R2 − a2
= MR, and lim

R→∞
MR = 0.

So, Jordan’s lemma applies, and we get lim
R→∞

∫
γR

eizQ(z) = 0.

3. Combining the previous two steps with the following observation (since the function is
even): ∫ ∞

0

x sin(x)

x2 + a2
dx =

1

2
P.V.

∫ ∞
−∞

x sin(x)

x2 + a2
dx =

1

2
Im

(
lim
R→∞

∫
µR

zeiz

z2 + a2
dz

)
,

we get: ∫ ∞
0

x sin(x)

x2 + a2
dx =

1

2
Im

(
lim
R→∞

(∫
CR

zeiz

z2 + a2
dz −

∫
γR

zeiz

z2 + a2
dz

))
=

1

2
Im(πie−a) =

π

2
e−a.

(28.3) Indenting the contour.– An indented contour (for example, the one given in Fig-
ure 1 on page 1) consists of 4 smooth pieces. Cr,R = γR +L1−γr +L2. It is used to compute

the integrals of the Class II, III type: P.V.

∫ ∞
−∞

eimxQ(x) dx, where m ∈ R≥0.



LECTURE 28 5

The only difference is that the function Q(z) is now allowed to have a pole of order 1 on
the real line, assumed to be at 0 ∈ R for simplicity. In this case, our steps are going to be:

• Compute

∫
Cr,R

eimzQ(z) dz using Cauchy’s integral formula.

• Prove that lim
R→∞

∫
γR

eimzQ(z) dz = 0, either using our important inequality, or Jor-

dan’s lemma.

• Compute lim
r→0

∫
γr

eimzQ(z) dz using the result given in §28.4 below.

Then, the final answer is:

P.V.

∫ ∞
−∞

eimzQ(z) dz = lim
R→∞
r→0

∫
L1+L2

eimzQ(z) dz =

∫
Cr,R

eimzQ(z) dz + lim
r→0

∫
γr

eimzQ(z) dz.

(28.4) .–

Lemma. Let f(z) be a holomorphic function. Assume that x0 ∈ R is a pole of f , of order
1, with Res

z=x0
(f(z)) = B ∈ C.

Let γr(θ) = x0 + reiθ, 0 ≤ θ ≤ π. Thus, γr is the counterclockwise semicircle of radius r,
centered at x0. Then,

lim
r→0

∫
γr

f(z) dz = πiB

(x0 does not have to be on the real line for the validity of this lemma. It is just that we
are only going to apply it in examples when x0 is real.)

Proof. Since f(z) has a pole of order 1 at z = x0, its Laurent series expansion has the form
(for some R > 0).

f(z) =
B

z − x0
+
∑
k≥0

ak(z − x0)k for z ∈ C such that 0 < |z − x0| < R.

The function g(z) =
∑
k≥0

akz
k is then holomorphic on the disc D(x0;R). Pick 0 < ρ < R

and let M be the absolute maximum of |g(z)| on the closed disc D(x0; ρ) = {z : |z−x0| ≤ ρ}.

For every r < ρ, we have:

∣∣∣∣∫
γr

g(z) dz

∣∣∣∣ ≤Mπr → 0 as r → 0.

For the term
B

z − x0
, we can compute the integral directly from the definition:∫

γr

B

z − x0
dz = B

∫ π

0

1

reiθ
rieiθ dθ = πiB.
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Hence, lim
r→0

∫
γr

f(z) dz = πiB + lim
r→0

∫
γr

g(z) dz = πiB. �

(28.5) Example 2.– Let m > 0, a > 0 be two real numbers. Compute

∫ ∞
0

sin(mx)

x(x2 + a2)
dx.

Solution. The function is even. So, the integral can be written as

1

2
Im

(
P.V.

∫ ∞
−∞

eimx

x(x2 + a2)
dx

)
=

1

2
Im

(
lim
R→∞
r→0

∫
L1+L2

eimz

z2 + a2
dz

)
(see Figure 5 below).

We will compute it using the steps outlined in §28.3 above. Let Cr,R be the contour as shown
below.

Figure 5. Contour Cr,R indented at 0.

1. Using Cauchy’s integral formula:

∫
Cr,R

eimz

z(z2 + a2)
dz = 2πi

e−ma

ai(2ai)
= −πie

−ma

a2
.

2. Verify that Jordan’s lemma (§28.1) applies to Q(z) =
1

z(z2 + a2)
(left as an easy exercise),

so that lim
R→∞

∫
γR

eimzQ(z) dz = 0.

3. The function f(z) =
eimz

z(z2 + a2)
has a pole of order 1 at z = 0, with Res

z=0
(f(z)) =

lim
z→0

zf(z) =
1

a2
. So, by Lemma 28.4 above, we get: lim

r→0

∫
γr

f(z) dz = i
π

a2
.

Combining all this, we get: P.V.

∫ ∞
−∞

eimx

x(x2 + a2)
dx = i

π

a2
(1− e−ma). Hence, our answer

is: ∫ ∞
0

sin(mx)

x(x2 + a2)
dx =

π

2a2
(
1− e−ma

)
.


