## COMPLEX ANALYSIS: LECTURE 28

(28.0) Review..- Recall that in Lecture 27, we studied two types of real integrals which can be computed using residues.

Class I. $\int_{0}^{2 \pi} R(\cos (\theta), \sin ($ theta $)) d \theta$.
Class II. P. V. $\int_{-\infty}^{\infty} Q(x) d x$.
In these notes we are going to take up two more types of examples.
Class III. Let $m \in \mathbb{R}_{>0}$. The following integrals are often computed using Jordan's lemma (see $\S 28.1$ and the example from $\S 28.2$ below).

$$
\text { P. V. } \int_{-\infty}^{\infty} \cos (m x) Q(x) d x \quad \text { and } \quad \text { P.V. } \int_{-\infty}^{\infty} \sin (m x) Q(x) d x
$$

The basic idea behind this type is still the one from Lecture $27, \S 27.4, \S 27.5$. Here we merely notice that the two integrals written above are (respectively) the real and imaginary parts of P. V. $\int_{-\infty}^{\infty} e^{\mathrm{i} m x} Q(x) d x$.

We will integrate $e^{\mathrm{i} z} Q(z)$ over the contour $C_{R}$ which consists of the straight line $\mu_{R}$ joining $-R$ to $R$, and the semicircle in the upper half plane $\gamma_{R}$, of radius $R$ centered at 0 (see Figure 4 below). Jordan's lemma is need to conclude that $\lim _{R \rightarrow \infty} \int_{\gamma_{R}} e^{\mathrm{i} m z} Q(z) d z=0$.
Class $I V$. In case $Q(z)$ has a pole (of order 1) on the real line, we will have to indent the contour, to avoid that point. See Figure 1 below, where 0 is avoided by going over it.


Figure 1. Contour $C_{r, R}$ consists of 4 smooth pieces: counterclockwise semicircle $\gamma_{R}$ followed by straight line $L_{1}$, clockwise semicircle $-\gamma_{r}$ and another straight line $L_{2}$.

The outline for solving such problems is given in $\S 28.3$ below. To deal with the limit $r \rightarrow 0$, we are going to prove a technical lemma in $\S 28.4$. An example of such type is given in §28.5.

## (28.1) Jordan's lemma.- ${ }^{1}$

Lemma. Let $m \in \mathbb{R}_{>0}$. Let $Q(z)$ be a holomorphic function satisfying the following properties.

- There is a positive real number $R_{0} \in \mathbb{R}_{>0}$ such that the set $\{z \in \mathbb{C}: \operatorname{Im}(z) \geq$ 0 and $\left.|z|>R_{0}\right\}$ is in the domain of $Q$. See Figure 2 below.


Figure 2. Domain of $Q(z)$ contains the set $|z|>R_{0}$ and $\operatorname{Im}(z) \geq 0$.

- For every $R>R_{0}$, let $\gamma_{R}$ be the semicircle in the upper half plane, of radius $R$, centered at 0. Then, there is a constant $M_{R}$ (depending on $R$ ) such that $|Q(z)|<M_{R}$ for every $z$ on the semicircle $\gamma_{R}$. Moreover, $\lim _{R \rightarrow \infty} M_{R}=0$.

Then,

$$
\lim _{R \rightarrow \infty} \int_{\gamma_{R}} e^{\mathrm{i} m z} Q(z) d z=0
$$

Proof. The proof of this lemma is based on the following inequality.
Claim. For every $0 \leq \theta \leq \frac{\pi}{2}$, we have $\sin (\theta) \geq \frac{2 \theta}{\pi}$.
Assuming this, we can finish the proof of the lemma as follows. Note that for $z=\gamma_{R}(\theta)=$ $R(\cos (\theta)+\mathbf{i} \sin (\theta))$, we have: $\left|e^{\mathbf{i} m z}\right|=e^{-m R \sin (\theta)}$. Using this, we can bound the integral over $\gamma_{R}$, starting from the definition $\int_{\gamma} f(z) d z=\int_{0}^{\pi} f(\gamma(\theta)) \gamma^{\prime}(\theta) d \theta$ :

[^0]\[

$$
\begin{aligned}
\left|\int_{\gamma_{R}} e^{\mathbf{i} m z} Q(z) d z\right| & =\left|\int_{0}^{\pi} e^{\mathbf{i} m R(\cos (\theta)+\mathbf{i} \sin (\theta))} Q\left(R e^{\mathbf{i} \theta}\right) \mathbf{i} R e^{\mathbf{i} \theta} d \theta\right| \\
& <M_{R} R \int_{0}^{\pi} e^{-m R \sin (\theta)} d \theta \quad\left(\text { since }\left|Q\left(R e^{\mathbf{i} \theta}\right)\right|<M_{R}\right) \\
& \left.=2 M_{R} R \int_{0}^{\frac{\pi}{2}} e^{-m R \sin (\theta)} d \theta \quad \text { (since } \sin (\theta)=\sin (\pi-\theta)\right) \\
& \leq 2 M_{R} R \int_{0}^{\frac{\pi}{2}} e^{-m R \frac{2 \theta}{\pi}} d \theta \quad \text { (using the inequality written above) } \\
& =2 M_{R} R\left[-\pi \frac{e^{-2 m R \frac{\theta}{\pi}}}{2 m R}\right]_{\theta=0}^{\frac{\pi}{2}}=\frac{\pi M_{R}}{m}\left(1-e^{-m R}\right) .
\end{aligned}
$$
\]

Now, by the assumption $\lim _{R \rightarrow \infty} M_{R}=0$, we get that $\lim _{R \rightarrow \infty} \frac{\pi M_{R}}{m}\left(1-e^{-m R}\right)=\frac{\pi}{m} \lim _{R \rightarrow \infty} M_{R}=$ 0 . The lemma is proved, except for the claimed inequality.


Figure 3. For $0<x<\frac{\pi}{2}$, area of the shaded region $=\frac{x}{2}<$ area of the triangle $=\frac{\tan (x)}{2}$.

Proof of the claim. It is perhaps easy to draw the graph of $y=\sin (x)$ and $y=\frac{2 x}{\pi}$, to see this inequality. Alternately, we can show that $f(x)=\frac{\sin (x)}{x}$ is a decreasing function of $x$, for $0 \leq x \leq \pi / 2$, by showing that $f^{\prime}(x)<0$ for $0<x<\pi / 2$. This will imply that the smallest value $f(x)$ takes is at $x=\pi / 2$, hence $\frac{\sin (x)}{x} \geq \frac{2}{\pi}$ for every $x \in[0, \pi / 2]$.

Now, for $x \in(0, \pi / 2), f^{\prime}(x)=\frac{x \cos (x)-\sin (x)}{x^{2}}=\frac{\cos (x)}{x^{2}}(x-\tan (x))$. As $\frac{\cos (x)}{x^{2}}>0$, and $x-\tan (x)<0$ (see Figure 3 above), we conclude that $f^{\prime}(x)<0$.
(28.2) Example 1.- Let us compute the integral $\int_{0}^{\infty} \frac{x \sin (x)}{x^{2}+a^{2}} d x$, where $a \in \mathbb{R}_{>0}$.

The idea is essentially same as the one from Lecture $27, \S 27.4$ and $\S 27.5$. The only difference is that now we change $\sin (x)$ to the imaginary part of $e^{i x}$.

Consider the following contour integral $\int_{C_{R}} \frac{z e^{\mathbf{i} z}}{z^{2}+a^{2}} d z$. The contour $C_{R}$ is same as the one from Lecture 27, and is shown in Figure 4 below.


Figure 4. Contour $C_{R}$

1. By Cauchy's integral formula $\int_{C_{R}} \frac{z e^{\mathbf{i} z}}{(z+a \mathbf{i})(z-a \mathbf{i})} d z=2 \pi \mathbf{i} \frac{a \mathbf{i} e^{-a}}{2 a \mathbf{i}}=\pi \mathbf{i} e^{-a}$.
2. We are going to apply Jordan's lemma from $\S 28.1$ above, to $Q(z)=\frac{z}{z^{2}+a^{2}}$ (with $m=1$ ). Clearly the set $\{z \in \mathbb{C}:|z|>a\}$ is in the domain of this function. On $\gamma_{R}$, this function is bounded by $\left|\frac{z}{z^{2}+a^{2}}\right|<\frac{R}{R^{2}-a^{2}}=M_{R}$, and $\lim _{R \rightarrow \infty} M_{R}=0$.

So, Jordan's lemma applies, and we get $\lim _{R \rightarrow \infty} \int_{\gamma_{R}} e^{\mathrm{i} z} Q(z)=0$.
3. Combining the previous two steps with the following observation (since the function is even):

$$
\int_{0}^{\infty} \frac{x \sin (x)}{x^{2}+a^{2}} d x=\frac{1}{2} \mathrm{P} . \mathrm{V} . \int_{-\infty}^{\infty} \frac{x \sin (x)}{x^{2}+a^{2}} d x=\frac{1}{2} \operatorname{Im}\left(\lim _{R \rightarrow \infty} \int_{\mu_{R}} \frac{z e^{\mathbf{i} z}}{z^{2}+a^{2}} d z\right)
$$

we get:

$$
\begin{aligned}
\int_{0}^{\infty} \frac{x \sin (x)}{x^{2}+a^{2}} d x & =\frac{1}{2} \operatorname{Im}\left(\lim _{R \rightarrow \infty}\left(\int_{C_{R}} \frac{z e^{\mathbf{i} z}}{z^{2}+a^{2}} d z-\int_{\gamma_{R}} \frac{z e^{\mathbf{i} z}}{z^{2}+a^{2}} d z\right)\right) \\
& =\frac{1}{2} \operatorname{Im}\left(\pi \mathbf{i} e^{-a}\right)=\frac{\pi}{2} e^{-a}
\end{aligned}
$$

(28.3) Indenting the contour.- An indented contour (for example, the one given in Figure 1 on page 1) consists of 4 smooth pieces. $C_{r, R}=\gamma_{R}+L_{1}-\gamma_{r}+L_{2}$. It is used to compute the integrals of the Class II, III type: P. V. $\int_{-\infty}^{\infty} e^{\mathrm{i} m x} Q(x) d x$, where $m \in \mathbb{R}_{\geq 0}$.

The only difference is that the function $Q(z)$ is now allowed to have a pole of order 1 on the real line, assumed to be at $0 \in \mathbb{R}$ for simplicity. In this case, our steps are going to be:

- Compute $\int_{C_{r, R}} e^{\mathrm{i} m z} Q(z) d z$ using Cauchy's integral formula.
- Prove that $\lim _{R \rightarrow \infty} \int_{\gamma_{R}} e^{\mathrm{i} m z} Q(z) d z=0$, either using our important inequality, or Jordan's lemma.
- Compute $\lim _{r \rightarrow 0} \int_{\gamma_{r}} e^{\mathrm{i} m z} Q(z) d z$ using the result given in $\S 28.4$ below.

Then, the final answer is:
P.V. $\int_{-\infty}^{\infty} e^{\mathrm{i} m z} Q(z) d z=\lim _{\substack{R \rightarrow \infty \\ r \rightarrow 0}} \int_{L_{1}+L_{2}} e^{\mathrm{i} m z} Q(z) d z=\int_{C_{r, R}} e^{\mathrm{i} m z} Q(z) d z+\lim _{r \rightarrow 0} \int_{\gamma_{r}} e^{\mathrm{i} m z} Q(z) d z$.
(28.4) .-

Lemma. Let $f(z)$ be a holomorphic function. Assume that $x_{0} \in \mathbb{R}$ is a pole of $f$, of order 1, with $\underset{z=x_{0}}{\operatorname{Res}}(f(z))=B \in \mathbb{C}$.

Let $\gamma_{r}(\theta)=x_{0}+r e^{\mathbf{i} \theta}, 0 \leq \theta \leq \pi$. Thus, $\gamma_{r}$ is the counterclockwise semicircle of radius $r$, centered at $x_{0}$. Then,

$$
\lim _{r \rightarrow 0} \int_{\gamma_{r}} f(z) d z=\pi \mathbf{i} B
$$

( $x_{0}$ does not have to be on the real line for the validity of this lemma. It is just that we are only going to apply it in examples when $x_{0}$ is real.)

Proof. Since $f(z)$ has a pole of order 1 at $z=x_{0}$, its Laurent series expansion has the form (for some $R>0$ ).

$$
f(z)=\frac{B}{z-x_{0}}+\sum_{k \geq 0} a_{k}\left(z-x_{0}\right)^{k} \text { for } z \in \mathbb{C} \text { such that } 0<\left|z-x_{0}\right|<R .
$$

The function $g(z)=\sum_{k \geq 0} a_{k} z^{k}$ is then holomorphic on the disc $D\left(x_{0} ; R\right)$. Pick $0<\rho<R$ and let $M$ be the absolute maximum of $|g(z)|$ on the closed disc $\overline{D\left(x_{0} ; \rho\right)}=\left\{z:\left|z-x_{0}\right| \leq \rho\right\}$.

For every $r<\rho$, we have: $\left|\int_{\gamma_{r}} g(z) d z\right| \leq M \pi r \rightarrow 0$ as $r \rightarrow 0$.
For the term $\frac{B}{z-x_{0}}$, we can compute the integral directly from the definition:

$$
\int_{\gamma_{r}} \frac{B}{z-x_{0}} d z=B \int_{0}^{\pi} \frac{1}{r e^{\mathbf{i} \theta}} r \mathbf{i} e^{\mathbf{i} \theta} d \theta=\pi \mathbf{i} B .
$$

Hence, $\lim _{r \rightarrow 0} \int_{\gamma_{r}} f(z) d z=\pi \mathbf{i} B+\lim _{r \rightarrow 0} \int_{\gamma_{r}} g(z) d z=\pi \mathbf{i} B$.
(28.5) Example 2.- Let $m>0, a>0$ be two real numbers. Compute $\int_{0}^{\infty} \frac{\sin (m x)}{x\left(x^{2}+a^{2}\right)} d x$.

Solution. The function is even. So, the integral can be written as

$$
\frac{1}{2} \operatorname{Im}\left(\mathrm{P} . \mathrm{V} . \int_{-\infty}^{\infty} \frac{e^{\mathrm{i} m x}}{x\left(x^{2}+a^{2}\right)} d x\right)=\frac{1}{2} \operatorname{Im}\left(\lim _{\substack{R \rightarrow \infty \\ r \rightarrow 0}} \int_{L_{1}+L_{2}} \frac{e^{\mathrm{i} m z}}{z^{2}+a^{2}} d z\right) \text { (see Figure } 5 \text { below). }
$$

We will compute it using the steps outlined in $\S 28.3$ above. Let $C_{r, R}$ be the contour as shown below.


Figure 5. Contour $C_{r, R}$ indented at 0.

1. Using Cauchy's integral formula: $\int_{C_{r, R}} \frac{e^{\mathbf{i} m z}}{z\left(z^{2}+a^{2}\right)} d z=2 \pi \mathbf{i} \frac{e^{-m a}}{a \mathbf{i}(2 a \mathbf{i})}=-\pi \mathbf{i} \frac{e^{-m a}}{a^{2}}$.
2. Verify that Jordan's lemma (§28.1) applies to $Q(z)=\frac{1}{z\left(z^{2}+a^{2}\right)}$ (left as an easy exercise), so that $\lim _{R \rightarrow \infty} \int_{\gamma_{R}} e^{\mathbf{i} m z} Q(z) d z=0$.
3. The function $f(z)=\frac{e^{\mathrm{i} m z}}{z\left(z^{2}+a^{2}\right)}$ has a pole of order 1 at $z=0$, with $\operatorname{Res}_{z=0}(f(z))=$ $\lim _{z \rightarrow 0} z f(z)=\frac{1}{a^{2}}$. So, by Lemma 28.4 above, we get: $\lim _{r \rightarrow 0} \int_{\gamma_{r}} f(z) d z=\mathbf{i} \frac{\pi}{a^{2}}$.

Combining all this, we get: P.V. $\int_{-\infty}^{\infty} \frac{e^{\mathbf{i} m x}}{x\left(x^{2}+a^{2}\right)} d x=\mathbf{i} \frac{\pi}{a^{2}}\left(1-e^{-m a}\right)$. Hence, our answer is:

$$
\int_{0}^{\infty} \frac{\sin (m x)}{x\left(x^{2}+a^{2}\right)} d x=\frac{\pi}{2 a^{2}}\left(1-e^{-m a}\right)
$$


[^0]:    ${ }^{1}$ Camille Jordan (1838-1922) Cours d'Analyse II (1894).

