
COMPLEX ANALYSIS: LECTURE 29

(29.0) What is in these notes.– These notes contain some remarkable applications of the
results we have obtained so far 1. Namely,

(1) Cauchy’s residue theorem (Lecture 26, §26.4).

(2) Weierstrass’ theorem on uniform convergence (Lecture 22, §22.6).

(3) Our important inequality (Lecture 12, §12.7).

We are going to use these to prove various expressions involving trigonometric functions,
almost all of them due to Euler. For instance:

cot(z) =
1

z
+
∞∑
n=1

(
1

z − nπ
+

1

z + nπ

)
.

cosec(z) =
1

z
+
∞∑
n=1

(−1)n
(

1

z − nπ
+

1

z + nπ

)
.

sin(z)

z
=
∞∏
n=1

(
1− z2

n2π2

)
.

These identities can be viewed as approximating trigonometric functions by rational func-
tions. The first two can also be thought of as “partial fraction decomposition”, except now
there are infinitely many terms.

While these and many other identities were obtained by Euler for computational purposes,

he used the last one to obtain the explicit value of
∞∑
n=1

1

n2
. (You can read more about it on

wikipedia - look for Basel problem.)

Euler’s solution to the Basel problem. Assuming the validity of
sin(z)

z
=

∞∏
n=1

(
1− z2

n2π2

)
,

we are going to compare the coefficient of z2 on both sides.

sin(z)

z
= 1− z2

3!
+
z4

5!
− · · · from the Taylor series expansion of sin(z).

1This material is optional. We are going to use the infinite product expansion of
sin(z)

z
in connection

with Euler’s gamma function later (Lecture 31, 32). You will have to take it on faith, in case you choose not
to read these notes.
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2 LECTURE 29

So, the left–hand side gives us −1

6
. The right–hand side gives us an infinite sum, namely

−
∞∑
n=1

1

n2π2
. Hence:

−1

6
= −

∞∑
n=1

1

n2π2
⇒

∞∑
n=1

1

n2
=
π2

6

I encourage you to read more about Euler’s work on infinite series in:

V.S. Varadarajan. Euler and his work on infinite series. Bulletin of the American
Mathematical Society (2007) volume 44, no. 4, 515-539.

You can download this paper from the following link:

https://people.math.osu.edu/gautam.42/S20/Varadarajan-Euler.pdf

(29.1) Generalized partial fractions.– Certain type of meromorphic functions can be
written as an infinite sum of rational fractions. This result is due to Mittag-Lefler 2 who
proposed and solved the problem of contructing meromorphic functions from the knowledge
of their behaviour near poles (known as Mittag-Leffler theorem). The result given in this
section is based on his paper from 1880, and is a special case of Mittag-Leffler theorem.

Let f : C 99K C be a meromorphic function (see Lecture 26, §26.5, §26.6). Let A ⊂ C
be the set of poles of f in the complex plane. Let us assume that the poles are arranged,
A = {a1, a2, . . .} in a way that 0 < |a1| ≤ |a2| ≤ · · · I am assuming that 0 is not a pole of
f 3.

Assumption 1. Assume that all the poles of f are of order 1 (poles of order 1 are also
called simple poles), and let Res

z=ak
(f(z)) = bk for every k ≥ 1.

Assumption 2. For every m ∈ Z≥1, it is possible to pick Rm ∈ R>0, so that

(1) R1 < R2 < . . . and Rm →∞ as m→∞.
(2) |aj| 6= Rm (for every j,m ≥ 1). (Meaning, the poles of f do not lie on the circle Cm

of radius Rm, centered at 0).
(3) There is a constant M ∈ R>0 such that |f(z)| < M for every z lying on Cm (for every

m ≥ 1). Just to clarify, M is independent of m ≥ 1. The same constant is supposed
to work for all circles.

2Gösta Mittag-Leffler (1846-1927)

3This is not a serious assumption for the result, since we can just replace f(z) by f(z) − b

z
, if f(z) did

have a pole of order 1 at z = 0 with residue b. See Example §29.2 below

https://people.math.osu.edu/gautam.42/S20/Varadarajan-Euler.pdf


LECTURE 29 3

Then, for every w ∈ C \ A:

f(w) = f(0) +
∞∑
k=1

bk

(
1

w − ak
+

1

ak

)
Proof. Let Ω = C \ A, so that f : Ω→ C is holomorphic. For each m ∈ Z≥1, let Cm be the
counterclockwise oriented circle of radius Rm, centered at 0.

Let Nm ∈ Z≥1 denote the positive integer so that

a1, a2, . . . , aNm ∈ Interior(Cm) and an ∈ Exterior(C), for every n > Nm.

The way the poles are arranged gives us N1 ≤ N2 ≤ . . .

Consider a point w ∈ Ω. Using Cauchy’s integral formula, we have (recall that each ak is
a pole of order 1, with residue bk):

1

2πi

∫
Cm

f(z)

z − w
dz = f(w) +

Nm∑
k=1

bk
bk − w

.

Replacing
1

z − w
=

1

z

(
1 +

w

z − w

)
, we get (again by Cauchy’s integral formula):

1

2πi

∫
Cm

f(z)

z − w
dz =

1

2πi

∫
Cm

f(z)

z
dz +

w

2πi

∫
Cm

f(z)

z(z − w)
dz

= f(0) +
Nm∑
k=1

bk
ak

+
w

2πi

∫
Cm

f(z)

z(z − w)
dz .

Combining the two expressions, we get:

f(w)−

(
f(0) +

Nm∑
k=1

bk

(
1

w − ak
+

1

ak

))
=

w

2πi

∫
Cm

f(z)

z(z − w)
dz.

Assume that m is large enough so that |w| < Rm. Then we get, using |f(z)| < M for
every z on Cm, and |z − w| ≥ Rm − |w|:∣∣∣∣ w2πi

∫
Cm

f(z)

z(z − w)
dz

∣∣∣∣ < |w|2π

M

Rm(Rm − |w|)
2πRm =

M |w|
Rm − |w|

.

By our assumption Rm → ∞ as m → ∞. So this integral goes to 0, as m → ∞. Hence
we obtain:

f(w) = f(0) +
∞∑
k=1

bk

(
1

w − ak
+

1

ak

)
.

Note that the same argument also gives the uniform convergence of this infinite sum, as
follows. Let K ⊂ C, a compact set be given such that K ⊂ Ω. Additionally, let ε > 0 be
given. Let a ∈ R>0 be such that |w| < a for every w ∈ K (exists since K is bounded).
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Choose m large enough that
Ma

Rm − a
< ε. Take N = Nm. Then, for every w ∈ K, we get:∣∣∣∣∣

∞∑
k=N+1

bk

(
1

w − ak
+

1

ak

)∣∣∣∣∣ =

∣∣∣∣ w2πi

∫
Cm

f(z)

z(z − w)
dz

∣∣∣∣ < Ma

Rm − a
< ε.

�

(29.2) Example.– Let us derive the expression of cosec(z) as given in §29.0. The poles of
cosec(z) are at πZ. By l’hôpital rule (n ∈ Z):

lim
z→nπ

(z − nπ) cosec(z) = lim
z→nπ

z − nπ
sin(z)

= lim
z→nπ

1

cos(z)
=

1

cos(nπ)
= (−1)n.

So, all the poles are simple, and Res
z=nπ

(cosec(z)) = (−1)n.

Consider the function f(z) = cosec(z)− 1

z
, so that it does not have a pole at 0. It remains

to check that Assumption 2 of §29.1 holds. Once that is done, the result obtained in §29.1
will give us:

cosec(z) =
1

z
+
∑
n∈Z 6=0

(−1)n
(

1

z − nπ
+

1

nπ

)
(Compare with the expansion given in §29.0 above, where the terms with n ∈ Z≥1 and −n
are combined.)

Verification of Assumption 2. For each m ∈ Z≥1, let Rm =

(
m+

1

2

)
π. Then,

• R1 < R2 < . . . and Rm →∞ as m→∞.

• cosec(z)− 1

z
does not have poles on the circle Cm of radius Rm, centered at 0.

To find the uniform bound M , it would be sufficient to consider | cosec(z)| alone, since∣∣∣∣cosec(z)− 1

z

∣∣∣∣ ≤ | cosec(z)|+ 1

|z|
< | cosec(z)|+ 1 (for z lying on any of Cm, |z| = Rm > 1).

Let us break the circle Cm into two parts (these are not disjoint, only Cm = P1 ∪ P2 is
needed).

P1 =
{
z ∈ Cm : | Im(z)| ≥ π

8

}
and P2 =

{
z ∈ Cm :

∣∣∣∣z ± (m+
1

2

)
π

∣∣∣∣ ≤ π

4

}
See Figure 1 below.

For z ∈ C such that | Im(z)| ≥ π

8
, we have

| cosec(z)| = 2

|eiz − e−iz|
≤ 2

||eiz| − |e−iz||
≤ 2

e| Im(z)| − e−| Im(z)| <
2

eπ/8 − 1
.

This gives us a bound (independent of m) on the part P1 of Cm.
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Figure 1. P1 consists of part of Cm lying above y =
π

8
or lying below y = −π

8
.

P2 consists of part of Cm lying in the shaded discs, both of radii
π

4
.

For the part P2, note that | cosec(z)| = | cosec(z + kπ)| for any k ∈ Z. So, if M1 is the
absolute maximum of | cosec(z)| on the closed disc

{
z ∈ C :

∣∣z − π
2

∣∣ ≤ π
4

}
, then (again inde-

pendent of m), we have | cosec(z)| ≤M1 for every z lying in the part P2 of Cm.

Now, take M > Max(M1, 2/(e
π/8 − 1)).

(29.3) Weierstrass’ infinite product expansion.– A result parallel to that of §29.1 was
obtained by Weierstrass in 1876. Here we focus on zeroes of a holomorphic function, instead
of poles of a meromorphic function.

Let f : C → C be an entire holomorphic function. Assume that f vanishes at (and only
at) points of a set A ⊂ C, which (as in §29.1 above) we arrange A = {a1, a2, . . .} so as to
have 0 < |a1| ≤ |a2| ≤ . . . Again, we are assuming that f(0) 6= 0, but it is not a serious
assumption. (see Footnote 3 on page 2).

Assumption 1. The order of vanishing of f at each ak is 1.

Assumption 2. Same as Assumption 2 of §29.1, but for the function
f ′(z)

f(z)
.

Then, for every z ∈ C:

f(z) = f(0)e
f ′(0)
f(0)

z
∞∏
n=1

((
1− z

an

)
e
z
an

)
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Remark. The notation
∞∏
k=1

uk(z) if for infinite product. Explicitly, we consider the following

sequence of functions:

F1(z) = u1(z), F2(z) = u1(z) · u2(z), · · · Fn(z) = u1(z) · u2(z) · · ·un(z), · · ·

Then,
∞∏
k=1

uk(z) is the limit lim
n→∞

Fn(z). In order to ensure that the limit behaves well, we will

have to verify that the sequence of functions {Fn(z)}∞n=1 converges uniformly (Weierstrass’
theorem on uniform convergence §22.6).

Proof. The proof in fact follows from the result obtained in §29.1, applied to the function

g(z) =
f ′(z)

f(z)
. Note that g(z) has simple poles at the points of A, of residue 1 (see Problem

Set 7, problem 5: f(a) = 0 implies Res
z=a

(
f ′(z)

f(z)

)
= order of vanishing of f at a).

Thus we get:

f ′(z)

f(z)
=
f ′(0)

f(0)
+
∞∑
n=1

(
1

z − an
+

1

an

)
We view this as a differential equation for f(z), and try to write f(z) as its solution.

The following calculation is heuristic, but very instructive. Note that
f ′(z)

f(z)
=

d

dz
(log(f(z)))

(it is therefore called logarithmic derivative). So, taking an antiderivative on both sides of
the differential equation, we get (at least formally - i.e, without worrying about logarithms):

log(f(z)) = C +
f ′(0)

f(0)
z +

∞∑
n=1

(
log(z − an) +

z

an

)
,

where C is a constant. Set z = 0 to get (again, we are not worrying about the convergence
issues):

log(f(0)) = C +
∞∑
n=1

log(−an).

Substituting it back in log(f(z)) written above, we get:

log(f(z)) = log(f(0)) +
f ′(0)

f(0)
z +

∞∑
n=1

(
log(z − an)− log(−an) +

z

an

)

= log(f(0)) +
f ′(0)

f(0)
z +

∞∑
n=1

(
log

(
1− z

an

)
+

z

an

)
.

Now take exponential to get the

f(z) = f(0)e
f ′(0)
f(0)

z
∞∏
n=1

((
1− z

an

)
e
z
an

)
.
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Now that the final result is obtained, we can proceed as follows (not relying on the heuris-
tic calculation). (1) Prove that the infinite product given on the right–hand side of the
equation written above, converges uniformly on C 4. (2) (easy) Check that it solves the same
differential equation as f(z), with the same initial value at z = 0. Hence, it equals f(z). �

(29.4) Example.– Consider the function f(z) =
sin(z)

z
. It is an entire holomorphic func-

tion, with zeroes of order 1 at z = nπ, n ∈ Z6=0. We have f(0) = 1 (by l’hôpital) and
f ′(z)

f(z)
= cot(z)− 1

z
, whose value at z = 0 is again computed using l’hôpital:

lim
z→0

z cos(z)− sin(z)

z sin(z)
= lim

z→0

−z sin(z)

z cos(z) + sin(z)
= lim

z→0

− sin(z)− z cos(z)

2 cos(z)− z sin(z)
= 0.

Leaving aside the verification of the assumptions imposed in §29.3, the result is:

sin(z)

z
=
∏
n∈Z 6=0

((
1− z

nπ

)
e
z
nπ

)
(Compare with the infinite product expansion written in §29.0 above, where, again we have
grouped the terms n and −n together).

Verification of Assumption 2 from §29.3 is absolutely similar to the one for cosec(z) given

in §29.2, except this time we are going to have to find a bound on
f ′(z)

f(z)
= cot(z)− 1

z
. The

argument given there works verbatim and I will not repeat it here.

4I am not going to write a proof here. In Lecture 32, we will discuss the uniform convergence of an infinite
product defining the gamma function. A proof will be given then.


