
COMPLEX ANALYSIS: LECTURE 30

(30.0) Holomorphic functions defined by integrals.– In this set of notes, we will intro-
duce a method of constructing holomorphic functions via finite and infinite integrals. The
general approach is going to be the following:

Input: K(t, z) : R≥0 × Ω→ C Output: f(z) =

∫ ∞
0

K(t, z) dt//

Here, Ω ⊂ C is an open set. K(t, z) is a function defined on t ∈ R≥0 and z ∈ Ω, which
takes values in C. We will have to impose various conditions on K(t, z) (see §30.3 below) in
order to ensure two properties:

• f : Ω→ C is a holomorphic function.

• f ′(z0) =

∫ ∞
0

∂zK(t, z0) dt, for every z0 ∈ Ω. Here ∂zK is the derivative of K(t, z)

with respect to the second variable z. More explicitly,

∂zK(t, z0) = lim
h→0
h∈C

K(t, z0 + h)−K(t, z0)

h
.

(Among other things, we will assume that this limit exists.)

Remarks.

(1) Such integrals appear very frequently in the theory of differential equations, asymp-
totic analysis and physics. A special case of great imporatance, known as Laplace
transform, is given in §30.5 below.

(2) The term infinite integrals was coined by Hardy 1 in 1902, to suggest the analogy be-

tween

∫ ∞
0

and
∞∑
n=0

. According to this philosophy, the diagram above is a continuous

version of the one I sketched in Lecture 21, §21.0. And, the main theorem of these
notes (§30.3) is the continuous analogue of Weierstrass’ theorem on uniform conver-
gence (Lecture 22, §22.6). By “continuous version”, I mean: instead of summing
over discrete subscript n = 0, 1, 2, . . ., we are “summing over” continuous parameter
t ∈ (0,∞).

(30.1) Finite case.– Let us begin by considering the finite integrals first. The set up is
as follows. We are given a closed bounded interval [a, b] ⊂ R, an open set Ω ⊂ C, and a

1G.H. Hardy (1877-1947)
1



2 LECTURE 30

function K(t, z) of two variables (taking values in C): K : [a, b]×Ω→ C. Assume that this
function satisfies the following hypotheses.

Assumption 1. K(t, z) is a contiuous function of (t, z) ∈ [a, b]× Ω.

Assumption 2. The continuity of K(t, z), in the variable z ∈ Ω, is uniform with respect to t.

Assumption 3. For a fixed t0 ∈ [a, b], the function K(t0,−) : Ω→ C is holomorphic.

Assumption 4. ∂zK(t, z) is a continuous function of t.

Theorem. For K(t, z) satisfying Assumptions 1-4 above, let us define f : Ω→ C by:

f(z) =

∫ b

a

K(t, z) dt

Then, f is a holomorphic function and f ′(z0) =

∫ b

a

∂zK(t, z0) dt.

(30.2) Remarks on the assumptions 1-4.–

(1) Assumption 1 is stronger than saying that K(t, z) is contiuous function of t and z
individually. You must have seen the following example in Calculus III. Let g(x, y) be a real
valued function of two real variables, defined by:

g(x, y) =

{ xy
x2+y2

if (x, y) 6= (0, 0)

0 if x = y = 0

Then, for a fixed x0 ∈ R, g(x0, y) is a continuous function of y (similarly, for a fixed y0,
g(x, y0) is a contiuous function of x), but it is not a contiuous function of (x, y) together.

(2) Recall that K(t, z) is contiuous at z0 ∈ Ω (assuming t ∈ [a, b] is fixed) means: given
ε > 0, there exists δ > 0 such that

0 < |z − z0| < δ implies that |K(t, z)−K(t, z0)| < ε.

This δ, in general, will depend on t. Assumption 2 means that a δ can be chosen to work
for all t ∈ [a, b] simultaneously.

Assumption 2 is actually not needed at all. It follows from assumption 1 (using Heine–
Borel theorem given in Optional Reading A §A.7). I have only it solely for the sake of
convenience in writing the proof below.

(3) Assumption 3 is absolutely crucial. It ensures that the following limit exists (for any
t ∈ [a, b] and z0 ∈ Ω):

lim
h→0
h∈C

K(t, z0 + h)−K(t, z0)

h
,
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which we define to be ∂zK(t, z0). This assumption will also allow us to write (for a fixed t),
K(t, z0) as a contour integral, using Cauchy’s integral formula.

(4) Now that ∂zK is defined, assumption 4 requires it to be contiuous in t ∈ [a, b] variable,

so that the integral

∫ b

a

∂zK(t, z) dt exists.

(30.3) Proof of Theorem 30.1.– 2 Theorem 30.2 is proved exactly as Weierstrass’ theo-
rem on uniform convergence (Lecture 22, §22.6). We begin by proving that f(z) is contiuous.

So, let z0 ∈ Ω and let ε > 0 be given. According to Assumtion 2, we can find δ > 0 such
that:

0 < |z − z0| < δ implies |K(t, z)−K(t, z0)| <
ε

b− a
for every t ∈ [a, b].

With this δ, we can conclude that, for every z such that 0 < |z − z0| < δ, we have:

|f(z)− f(z0)| =
∣∣∣∣∫ b

a

(K(t, z)−K(t, z0)) dt

∣∣∣∣ ≤ ∫ b

a

|K(t, z)−K(t, z0)| dt

By the important inequality (§12.7), we get

|f(z)− f(z0)| <
ε

b− a
· (b− a) = ε.

Hence f(z) is contiuous.

Next, we will prove that f ′(z0) exists for every z0 ∈ Ω. First of all, let us pick a positive
real number r ∈ R>0 so that the open disc D(z0; r) ⊂ Ω (exists, since Ω is open). Choose
another number 0 < ρ < r so that the counterclockwise oriented circle Cρ of radius ρ,
centered at z0 lies in Ω. By Cauchy’s integral formula, for every w ∈ D(z0; ρ) (and t ∈ [a, b])
we have:

K(t, w) =
1

2πi

∫
Cρ

K(t, z)

z − w
dz.

(we are using Assumption 3 - for a fixed t, K(t, z) is a holomorphic function of z ∈ Ω).

Now we are ready to show that the limit lim
h→0

f(z0 + h)− f(z0)

h
exists. We are going to

assume that |h| < ρ. This gives:

f(z0 + h)− f(z0)

h
=

1

h

∫ b

a

(K(t, z0 + h)−K(t, z0)) dt

=
1

2πih

∫ b

a

(∫
Cρ

K(t, z)

z − z0 − h
− K(t, z)

z − z0
dz

)
dt

=
1

2πi

∫ b

a

(∫
Cρ

K(t, z)

(z − z0 − h)(z − z0)
dz

)
dt

2Optional
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Now we have to prove that the limit as h → 0 of the last integral exists and is given by∫ b

a

∂zK(t, z0) dt (which exists by Assumption 4). By Cauchy’s integral formula, we have:

∂zK(t, z0) =
1

2πi

∫
Cρ

K(t, z)

(z − z0)2
dz.

Now our proof proceeds as the one given in Lecture 17, §17.2. Let M be the maximum
of |K(t, z)| as t ∈ [a, b] and z lies on Cρ (this is a compact set, and K(t, z) is continuous
in both variables jointly by Assmption 1 - so absolute maximum exists and is finite). We
obtain the following bound (see §17.2 for details of this computation):∣∣∣∣∣ 1

2πi

∫ b

a

(∫
Cρ

(
K(t, z)

(z − z0 − h)(z − z0)
− K(t, z)

(z − z0)2

)
dz

)
dt

∣∣∣∣∣ ≤ M(b− a)

ρ(ρ− |h|)
|h| ,

which → 0 and h→ 0. Hence, we can conclude that f ′(z0) exists and:

f ′(z0) =

∫ b

a

∂zK(t, z0) dt .

(30.4) Infinite integral.– Now we consider the case of the infinite integral. We have

K : R≥0 × Ω→ C, and we are going to define f(z) =

∫ ∞
0

K(t, z) dt.

Recall (from Calculus II) that the infinite integral is defined as the limit of finite ones:∫ ∞
0

g(t) dt = lim
R→∞

∫ R

0

g(t) dt. The existence of such a limit (by Cauchy’s criterion - see

Lecture 21, page 2) amounts to saying that: for every ε > 0, we can find R such that:

For every S > R we have

∣∣∣∣∫ S

R

g(t) dt

∣∣∣∣ < ε.

In particular

∣∣∣∣∫ ∞
R

g(t) dt

∣∣∣∣ ≤ ε. Meaning, the integral remaining after R can be made

as small as we want. This statement is in fact equivalent to Cauchy’s criterion, because∫ S
R

=
∫∞
R
−
∫∞
S

.

Assumptions on K(t, z). We have to continue imposing the assumptions laid out in §30.1
above. Just to write them again:

Assumption 1. K(t, z) is a contiuous function of (t, z) ∈ R≥0 × Ω.

Assumption 2. The continuity of K(t, z) in z variable is uniform with respect to closed
and bounded intervals in R.

Assumption 3. For fixed t0 ∈ R≥0, K(t0, z) is a holomorphic function of z.

Assumption 4. ∂zK(t, z) is a contiuous function of t.
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Additionally, we have to assume that

∫ ∞
0

K(t, z) dt exists, which amounts to the existence

of a limit. We will require this limit to exist uniformly in z ∈ Ω 3.

Assmption 5. The limit lim
R→∞

∫ R

0

K(t, z) dt exists uniformly in z. To spell it out: for every

compact set D ⊂ C contained in Ω, and every ε > 0, we can find R such that∣∣∣∣∫ ∞
R

K(t, z) dt

∣∣∣∣ < ε for every z ∈ D.

Theorem. Let K(t, z) be a function of two variables t ∈ R≥0 and z ∈ Ω satisfying Assump-
tions 1-5 above. Define:

f(z) =

∫ ∞
0

K(t, z) dt

Then, f(z) is a holomorphic function on Ω and f ′(z) =

∫ ∞
0

∂zK(t, z) dt.

Proof. This theorem is a consequence of Theorem 30.1 and Weierstrass’ theorem on uniform
convergence (Lecture 22, §22.6). In a bit more detail, for every N ∈ Z≥1, define fN(z) =∫ N

0

K(t, z) dt. This is a holomorphic function by Theorem 30.1 and the sequence of functions

{fN(z)}∞N=1 converges uniformly by Assumption 5. So, the limit is a holomorphic function
by Weierstrass’ theorem, and the derivative is the uniform limit of {f ′N(z)}. The theorem is
proved. �

(30.5) Laplace transform.– Let ϕ(t) be a continuous function of a real variable t, taking
values in C. The Laplace transform of ϕ, denoted by Lϕ(z), is defined as:

Lϕ(z) =

∫ ∞
0

ϕ(t)e−zt dt

Let us assume that there exists constants (independent of t), r, C ∈ R>0 such that
|ϕ(t)| < Cert for every t ∈ R≥0.

Claim. Lϕ is a holomorphic function on Ω = {z ∈ C : Re(z) > r}.

Proof. In order to use Theorem 30.4, we have to verify Assumptions 1-5 for K(t, z) =
ϕ(t)e−zt : R≥0 × Ω→ C.

Assumptions 1-4 hold without any difficulty. The only non–trivial thing to check is As-

sumption 5: lim
R→∞

∫ R

0

K(t, z) dt exists, uniformly in z ∈ Ω.

3Recall that we agreed: “uniformly” without any other specifications means “with respect to compact
sets D ⊂ C contained in Ω”
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Let D ⊂ Ω be a closed and bounded set. Pick r1 > r such that Re(z) ≥ r1 for every
z ∈ D. Then, for every z ∈ D we have |e−zt| = e−tRe(z) ≤ e−r1t.∣∣∣∣∫ ∞

R

ϕ(t)e−zt dt

∣∣∣∣ ≤ ∫ ∞
R

Ce−(r1−r)t dt = C
e−(r1−r)R

r1 − r
.

So, given ε > 0, choose R large enough so that e−(r1−r)R < r1−r
C
ε (this can be done since

lim
R→∞

e−(r1−r)R = 0). Then, for every z ∈ D, we have that

∣∣∣∣∫ ∞
R

ϕ(t)e−zt dt

∣∣∣∣ < ε. The claim is

proved. �

Examples.

(1) ϕ(t) = 1. We get Lϕ(z) =

∫ ∞
0

e−zt dt = −1

z

[
e−zt

]∞
t=0

. Assuming Re(z) > 0, we can

conclude that limt→∞ e
−zt = 0. Thus Lϕ(z) =

1

z
for Re(z) > 0.

(2) ϕ(t) = t. Again we can compute (integration by parts):

Lϕ(z) =

∫ ∞
0

te−zt dt = −1

z

[
te−zt

]∞
t=0

+
1

z

∫ ∞
0

e−zt dt =
1

z2
,

assuming Re(z) > 0. Note that the first term on the right–hand side of the equation
vanishes under this assumption.

(3) (Exercise.) Let ϕ(t) =
tn

n!
(n ∈ Z≥0). Prove that Lϕ(z) = z−n−1, for Re(z) > 0.

(4) (Exercise.) Let ϕ(t) = et. Prove that Lϕ(z) =
1

z − 1
, for Re(z) > 1.

(5) (Exercise.) Let ϕ(t) be a contiuous function of a real variable t. Let c ∈ C be a
constant and define ψ(t) = ectϕ(t). Prove the following identity:

Lψ(z) = Lϕ(z − c)
(30.6) Gamma function.– The gamma function Γ(z) was defined by Euler in 1729 as the
following infinite integral:

Γ(z) =

∫ ∞
0

tz−1e−t dt

We will prove next week that this integral is well–defined for Re(z) > 0. For now, I leave
you with the following exercise (which is in fact Exercise from Example (3) in §30.5 above):

Exercise. Let n ≥ 0. Prove that

∫ ∞
0

tne−t dt = n!

(This exercise was the motivation behind defining Γ(z) in terms of infinite integral as
written above - Γ function was discovered by Euler as a (or the with some additional as-
sumptions) solution to the problem of interpolating points {(n, n!) : n ∈ Z≥0}. This problem
was suggested to Euler by Goldbach.)


