COMPLEX ANALYSIS: LECTURE 30

(30.0) Holomorphic functions defined by integrals.— In this set of notes, we will intro-
duce a method of constructing holomorphic functions via finite and infinite integrals. The
general approach is going to be the following:

Input: K(t,2) : Rsg X @ — C p~~~~~~> Output: f(z) = / K(t,z)dt
0

Here, 2 C C is an open set. K(t,z) is a function defined on ¢ € R>y and z € Q, which
takes values in C. We will have to impose various conditions on K (t, z) (see §30.3 below) in
order to ensure two properties:

e f:Q — C is a holomorphic function.
o f(2) = / 0.K (t,z) dt, for every zg € Q. Here 0,K is the derivative of K(t,z)
0
with respect to the second variable z. More explicitly,
K(t h) — K(t
0.K(t, zp) = lim (b2 + 1) (t, 20) .

h—0 h
heC

(Among other things, we will assume that this limit exists.)

Remarks.

(1) Such integrals appear very frequently in the theory of differential equations, asymp-
totic analysis and physics. A special case of great imporatance, known as Laplace
transform, is given in §30.5 below.

(2) The term infinite integrals was coined by Hardy ! in 1902, to suggest the analogy be-

00 00

tween / and Z According to this philosophy, the diagram above is a continuous
0 n=0

version of the one I sketched in Lecture 21, §21.0. And, the main theorem of these

notes (§30.3) is the continuous analogue of Weierstrass’ theorem on uniform conver-

gence (Lecture 22, §22.6). By “continuous version”, I mean: instead of summing

over discrete subscript n = 0,1,2,..., we are “summing over” continuous parameter

t € (0,00).

(30.1) Finite case.— Let us begin by considering the finite integrals first. The set up is
as follows. We are given a closed bounded interval [a,b] C R, an open set 2 C C, and a

1G.H. Hardy (1877-1947)



2 LECTURE 30

function K (¢, z) of two variables (taking values in C): K : [a,b] x Q@ — C. Assume that this
function satisfies the following hypotheses.

Assumption 1. K(t,z) is a contiuous function of (¢, z) € [a, b] x Q.
Assumption 2. The continuity of K (t, z), in the variable z € €2, is uniform with respect to ¢.
Assumption 3. For a fixed ty € [a, ], the function K (t, —) : @ — C is holomorphic.

Assumption 4. 0,K(t, z) is a continuous function of .

Theorem. For K(t,z) satisfying Assumptions 1-4 above, let us define f : Q — C by:

b
f(z) = / K(t,z)dt

b
Then, f is a holomorphic function and f'(z) = / 0. K (t, zp) dt.
(30.2) Remarks on the assumptions 1-4.—

(1) Assumption 1 is stronger than saying that K(¢,z) is contiuous function of ¢ and z
individually. You must have seen the following example in Calculus III. Let g(z,y) be a real
valued function of two real variables, defined by:

n it (5,y) £ (0,0)
_ 217 1 Y )
9(z,y) { 0 ifx=y=0

Then, for a fixed o € R, g(zo,y) is a continuous function of y (similarly, for a fixed o,
g(x,yo) is a contiuous function of x), but it is not a contiuous function of (x,y) together.

(2) Recall that K(t,z) is contiuous at zy € Q (assuming ¢t € [a,b] is fixed) means: given
€ > 0, there exists 6 > 0 such that

0 < |z — 29| < ¢ implies that |K (¢, 2) — K(t,20)| < €.

This 9§, in general, will depend on ¢. Assumption 2 means that a d can be chosen to work
for all t € [a, b] simultaneously.

Assumption 2 is actually not needed at all. It follows from assumption 1 (using Heine—
Borel theorem given in Optional Reading A §A.7). I have only it solely for the sake of
convenience in writing the proof below.

(3) Assumption 3 is absolutely crucial. It ensures that the following limit exists (for any
t € [a,b] and zy € Q):

lim K(t,zo+ h) — K(t,2) |

h—0 h
heC
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which we define to be 0,K(t, z). This assumption will also allow us to write (for a fixed t),
K (t,z9) as a contour integral, using Cauchy’s integral formula.

(4) Now that 0,K is defined, assumption 4 requires it to be contiuous in ¢ € [a, b] variable,

b
so that the integral / 0.K(t,z) dt exists.
a

(30.3) Proof of Theorem 30.1.— ? Theorem 30.2 is proved exactly as Weierstrass’ theo-
rem on uniform convergence (Lecture 22, §22.6). We begin by proving that f(z) is contiuous.

So, let zg € €2 and let € > 0 be given. According to Assumtion 2, we can find § > 0 such

that:
€

0 < |z — 20| < 0 implies |K(t,2) — K(t, 2z0)| < 7 for every t € [a, b].

—a

With this §, we can conclude that, for every z such that 0 < |z — 2| < J, we have:

£ (2) = f(20)| = /(K(t72)—K(t,Zo))dt‘§/ |K(t,2) — K(t, 20)| dt

By the important inequality (§12.7), we get
£(2)— Fla)l <

3

-(b—a)=c.

Hence f(z) is contiuous.

Next, we will prove that f’(zg) exists for every zy € €. First of all, let us pick a positive
real number r € R.q so that the open disc D(zp;r) C Q (exists, since 2 is open). Choose
another number 0 < p < r so that the counterclockwise oriented circle C, of radius p,
centered at zg lies in Q. By Cauchy’s integral formula, for every w € D(zy; p) (and t € [a, b])
we have:

1 K(t, z)
K(t,w) = —
(t,w) 2mi Jo, 2 —w

dz.

(we are using Assumption 3 - for a fixed t, K(t, z) is a holomorphic function of z € Q).

B) —
Now we are ready to show that the limit }llin(l) flz+ ]z /(=)
—

exists. We are going to

assume that |h| < p. This gives:

f(Zo + h) — f(Zo) _ 1 /b(K(t’ o+ h) _ K(t’ 2;0)) dt

h h
1/ K
2mih [, Cﬁz—zo—h zZ— 2

b b K(t, 2) 8
-~ 2ni ), </Cp(z—zo—h)(z—zo)d>dt

2Optional
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Now we have to prove that the limit as h — 0 of the last integral exists and is given by
/ 0.K(t, z9) dt (which exists by Assumption 4). By Cauchy’s integral formula, we have:
1 K(t
0.K(t,20) = / K(t2) dz.
omi c, (2 —20)?

Now our proof proceeds as the one given in Lecture 17, §17.2. Let M be the maximum
of |[K(t,z)| as t € [a,b] and z lies on C, (this is a compact set, and K (¢, z) is continuous
in both variables jointly by Assmption 1 - so absolute maximum exists and is finite). We
obtain the following bound (see §17.2 for details of this computation):

< M@ —a)

il </c (e=nie= oy dz) ey

which — 0 and h — 0. Hence, we can conclude that f'(zo) exists and:
b
P = [ 0K(t a)at

(30.4) Infinite integral.— Now we consider the case of the infinite integral. We have

K :R> x Q — C, and we are going to define f(z / K(t, z)dt.

],

Recall (from Calculus II) that the infinite integral is defined as the limit of finite ones:

/ g(t)dt = llm / t)dt. The existence of such a limit (by Cauchy’s criterion - see

Lecture 21, page 2 amounts to saying that: for every € > 0, we can find R such that:

s
/ g(t)dt| <e
R

In particular g(t)dt| < e. Meaning, the integral remaining after R can be made

For every S > R we have

R

as small as we want. This statement is in fact equivalent to Cauchy’s criterion, because
S (9] 9]
fR - fR - fs :

Assumptions on K(t,z). We have to continue imposing the assumptions laid out in §30.1
above. Just to write them again:

Assumption 1. K(t,z) is a contiuous function of (¢, z) € Rsq x €.

Assumption 2. The continuity of K (t,z) in z variable is uniform with respect to closed
and bounded intervals in R.

Assumption 3. For fixed ty € Rsq, K(to, z) is a holomorphic function of z.

Assumption 4. 0,K(t,z) is a contiuous function of t.
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o
Additionally, we have to assume that / K (t, z) dt exists, which amounts to the existence
0

of a limit. We will require this limit to exist uniformly in z € Q 3.

R

Assmption 5. The limit ]%im K(t, z) dt exists uniformly in z. To spell it out: for every
—00

compact set D C C contained in €2, and every € > 0, we can find R such that

/R TR ) di

Theorem. Let K(t, z) be a function of two variables t € Rs¢ and z € Q) satisfying Assump-
tions 1-5 above. Define:

< ¢ for every z € D.

f(z) = /OOOK(t,z)dt

Then, f(z) is a holomorphic function on Q and f'(z) :/ 0.K(t,z)dt.
0

Proof. This theorem is a consequence of Theorem 30.1 and Weierstrass’ theorem on uniform

convergence (Lecture 22, §22.6). In a bit more detail, for every N € Z>4, define fy(z) =
N

K(t, z) dt. This is a holomorphic function by Theorem 30.1 and the sequence of functions

0
{fn(2)}%_, converges uniformly by Assumption 5. So, the limit is a holomorphic function
by Weierstrass’ theorem, and the derivative is the uniform limit of { fj,(z)}. The theorem is
proved. O

(30.5) Laplace transform.— Let ¢(t) be a continuous function of a real variable ¢, taking
values in C. The Laplace transform of ¢, denoted by Lp(z), is defined as:

Lp(z) = /000 o(t)e " dt

Let us assume that there exists constants (independent of t), r,C € R.y such that
lo(t)| < Ce™ for every t € Rxo.

Claim. Ly is a holomorphic function on Q = {z € C: Re(z) > r}.

Proof. In order to use Theorem 30.4, we have to verify Assumptions 1-5 for K(t,z) =
go(t)e_Zt : Rzo x ) — C.
Assumptions 1-4 hold without any difficulty. The only non—trivial thing to check is As-
R

sumption 5: lim K(t, z) dt exists, uniformly in z € Q.
R—o0 0

3Recall that we agreed: “uniformly” without any other specifications means “with respect to compact
sets D C C contained in 0"
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Let D C Q be a closed and bounded set. Pick r; > r such that Re(z) > r; for every
z € D. Then, for every z € D we have |e=%| = e7tRe?) < e7m1t,

/ o(t)e  dt| < / Ce~m=mtat = C

R R ™ —rT

ef(rlfr)R

So, given € > 0, choose R large enough so that e~ ("% < e (this can be done since

/ o(t)e dt‘ < e. The claim is
R

ri—r
C

]%im e~ ("="E — (). Then, for every z € D, we have that
—r 00

proved.

Examples.

00 1 -
(1) ¢(t) =1. We get Lo(z) = /0 e Pt = — [e] o~ Assuming Re(z) > 0, we can

1
conclude that lim; o, e7** = 0. Thus L¢(z) = - for Re(z) > 0.
2

(2) ¢(t) =t. Again we can compute (integration by parts):
> 1 1 [~ 1
Lo(z)= [ te*dt=——[te™] " —/ it =,
o(2) /0 g ol L P >

assuming Re(z) > 0. Note that the first term on the right-hand side of the equation
vanishes under this assumption.

n

t
(3) (Ezercise.) Let ¢(t) = o (n € Zsp). Prove that Lo(z) = 27", for Re(z) > 0.
1
(4) (Ezercise.) Let ¢(t) = e'. Prove that Lp(z) = P for Re(z) > 1.

(5) (Ezercise.) Let ¢(t) be a contiuous function of a real variable t. Let ¢ € C be a
constant and define ¥ (t) = e“p(t). Prove the following identity:

Ly(z) = Lo(z =)
(30.6) Gamma function.— The gamma function I'(z) was defined by Euler in 1729 as the
following infinite integral:

['(z) = / t=te tdt
0

We will prove next week that this integral is well-defined for Re(z) > 0. For now, I leave

you with the following exercise (which is in fact Exercise from Example (3) in §30.5 above):

FExercise. Let n > 0. Prove that t"e tdt = n!

(This exercise was the motivat?on behind defining I'(z) in terms of infinite integral as
written above - I' function was discovered by Euler as a (or the with some additional as-
sumptions) solution to the problem of interpolating points {(n, n!) : n € Z>o}. This problem
was suggested to Euler by Goldbach.)



