(30.0) Holomorphic functions defined by integrals.— In this set of notes, we will introduce a method of constructing holomorphic functions via finite and infinite integrals. The general approach is going to be the following:

\[\text{Input: } K(t, z) : \mathbb{R}_{\geq 0} \times \Omega \to \mathbb{C} \quad \text{Output: } f(z) = \int_{0}^{\infty} K(t, z) \, dt \]

Here, \(\Omega \subset \mathbb{C} \) is an open set. \(K(t, z) \) is a function defined on \(t \in \mathbb{R}_{\geq 0} \) and \(z \in \Omega \), which takes values in \(\mathbb{C} \). We will have to impose various conditions on \(K(t, z) \) (see §30.3 below) in order to ensure two properties:

- \(f : \Omega \to \mathbb{C} \) is a holomorphic function.
- \(f'(z_0) = \int_{0}^{\infty} \partial_z K(t, z_0) \, dt \), for every \(z_0 \in \Omega \). Here \(\partial_z K \) is the derivative of \(K(t, z) \) with respect to the second variable \(z \). More explicitly,
 \[\partial_z K(t, z_0) = \lim_{h \to 0, h \in \mathbb{C}} \frac{K(t, z_0 + h) - K(t, z_0)}{h} . \]
 (Among other things, we will assume that this limit exists.)

Remarks.

(1) Such integrals appear very frequently in the theory of differential equations, asymptotic analysis and physics. A special case of great importance, known as Laplace transform, is given in §30.5 below.

(2) The term infinite integrals was coined by Hardy \(^1\) in 1902, to suggest the analogy between \(\int_{0}^{\infty} \) and \(\sum_{n=0}^{\infty} \). According to this philosophy, the diagram above is a continuous version of the one I sketched in Lecture 21, §21.0. And, the main theorem of these notes (§30.3) is the continuous analogue of Weierstrass’ theorem on uniform convergence (Lecture 22, §22.6). By “continuous version”, I mean: instead of summing over discrete subscript \(n = 0, 1, 2, \ldots \), we are “summing over” continuous parameter \(t \in (0, \infty) \).

(30.1) Finite case.— Let us begin by considering the finite integrals first. The set up is as follows. We are given a closed bounded interval \([a, b] \subset \mathbb{R}\), an open set \(\Omega \subset \mathbb{C} \), and a

\(^1\text{G.H. Hardy (1877-1947)}\)
function $K(t, z)$ of two variables (taking values in \mathbb{C}): $K : [a, b] \times \Omega \to \mathbb{C}$. Assume that this function satisfies the following hypotheses.

Assumption 1. $K(t, z)$ is a continuous function of $(t, z) \in [a, b] \times \Omega$.

Assumption 2. The continuity of $K(t, z)$, in the variable $z \in \Omega$, is uniform with respect to t.

Assumption 3. For a fixed $t_0 \in [a, b]$, the function $K(t_0, -) : \Omega \to \mathbb{C}$ is holomorphic.

Assumption 4. $\partial_z K(t, z)$ is a continuous function of t.

Theorem. For $K(t, z)$ satisfying Assumptions 1-4 above, let us define $f : \Omega \to \mathbb{C}$ by:

$$f(z) = \int_a^b K(t, z) \, dt$$

Then, f is a holomorphic function and $f'(z_0) = \int_a^b \partial_z K(t, z_0) \, dt$.

Remarks on the assumptions 1-4.

1. Assumption 1 is stronger than saying that $K(t, z)$ is continuous function of t and z individually. You must have seen the following example in Calculus III. Let $g(x, y)$ be a real valued function of two real variables, defined by:

$$g(x, y) = \begin{cases}
xy & \text{if } (x, y) \neq (0, 0) \\
0 & \text{if } x = y = 0
\end{cases}$$

Then, for a fixed $x_0 \in \mathbb{R}$, $g(x_0, y)$ is a continuous function of y (similarly, for a fixed y_0, $g(x, y_0)$ is a continuous function of x), but it is not a continuous function of (x, y) together.

2. Recall that $K(t, z)$ is continuous at $z_0 \in \Omega$ (assuming $t \in [a, b]$ is fixed) means: given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$0 < |z - z_0| < \delta \text{ implies that } |K(t, z) - K(t, z_0)| < \epsilon.$$

This δ, in general, will depend on t. Assumption 2 means that a δ can be chosen to work for all $t \in [a, b]$ simultaneously.

Assumption 2 is actually not needed at all. It follows from assumption 1 (using Heine–Borel theorem given in Optional Reading A §A.7). I have only it solely for the sake of convenience in writing the proof below.

3. Assumption 3 is absolutely crucial. It ensures that the following limit exists (for any $t \in [a, b]$ and $z_0 \in \Omega$):

$$\lim_{h \to 0 \atop h \in \mathbb{C}} \frac{K(t, z_0 + h) - K(t, z_0)}{h},$$
which we define to be \(\partial_z K(t, z_0) \). This assumption will also allow us to write (for a fixed \(t \), \(K(t, z_0) \) as a contour integral, using Cauchy’s integral formula.

(4) Now that \(\partial_z K \) is defined, assumption 4 requires it to be continuous in \(t \in [a, b] \) variable, so that the integral \(\int_a^b \partial_z K(t, z) \, dt \) exists.

(30.3) **Proof of Theorem 30.1.** – Theorem 30.2 is proved exactly as Weierstrass’ theorem on uniform convergence (Lecture 22, §22.6). We begin by proving that \(f(z) \) is continuous.

So, let \(z_0 \in \Omega \) and let \(\varepsilon > 0 \) be given. According to Assumption 2, we can find \(\delta > 0 \) such that:

\[
0 < |z - z_0| < \delta \text{ implies } |K(t, z) - K(t, z_0)| < \frac{\varepsilon}{b - a} \text{ for every } t \in [a, b].
\]

With this \(\delta \), we can conclude that, for every \(z \) such that \(0 < |z - z_0| < \delta \), we have:

\[
|f(z) - f(z_0)| = \left| \int_a^b (K(t, z) - K(t, z_0)) \, dt \right| \leq \int_a^b |K(t, z) - K(t, z_0)| \, dt.
\]

By the important inequality (§12.7), we get

\[
|f(z) - f(z_0)| < \frac{\varepsilon}{b - a} \cdot (b - a) = \varepsilon.
\]

Hence \(f(z) \) is continuous.

Next, we will prove that \(f'(z_0) \) exists for every \(z_0 \in \Omega \). First of all, let us pick a positive real number \(r \in \mathbb{R}_{>0} \) so that the open disc \(D(z_0; r) \subset \Omega \) (exists, since \(\Omega \) is open). Choose another number \(0 < \rho < r \) so that the counterclockwise oriented circle \(C_\rho \) of radius \(\rho \), centered at \(z_0 \) lies in \(\Omega \). By Cauchy’s integral formula, for every \(w \in D(z_0; \rho) \) (and \(t \in [a, b] \)) we have:

\[
K(t, w) = \frac{1}{2\pi i} \int_{C_\rho} \frac{K(t, z)}{z-w} \, dz.
\]

(we are using Assumption 3 - for a fixed \(t \), \(K(t, z) \) is a holomorphic function of \(z \in \Omega \)).

Now we are ready to show that the limit \(\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} \) exists. We are going to assume that \(|h| < \rho \). This gives:

\[
\frac{f(z_0 + h) - f(z_0)}{h} = \frac{1}{h} \int_a^b (K(t, z_0 + h) - K(t, z_0)) \, dt
\]

\[
= \frac{1}{2\pi i h} \int_a^b \left(\int_{C_\rho} \frac{K(t, z)}{z-z_0-h} - \frac{K(t, z)}{z-z_0} \, dz \right) \, dt
\]

\[
= \frac{1}{2\pi i} \int_a^b \left(\int_{C_\rho} \frac{K(t, z)}{(z-z_0-h)(z-z_0)} \, dz \right) \, dt
\]
Now we have to prove that the limit as $h \to 0$ of the last integral exists and is given by
\[\int_a^b \partial_z K(t, z_0) \, dt \] (which exists by Assumption 4). By Cauchy’s integral formula, we have:
\[
\partial_z K(t, z_0) = \frac{1}{2\pi i} \int_{C_\rho} \frac{K(t, z)}{(z - z_0)^2} \, dz.
\]

Now our proof proceeds as the one given in Lecture 17, §17.2. Let M be the maximum of $|K(t, z)|$ as $t \in [a, b]$ and z lies on C_ρ (this is a compact set, and $K(t, z)$ is continuous in both variables jointly by Assumption 1 - so absolute maximum exists and is finite). We obtain the following bound (see §17.2 for details of this computation):
\[
\left| \frac{1}{2\pi i} \int_a^b \left(\int_{C_\rho} \frac{K(t, z)}{(z - z_0 - h)(z - z_0)} - \frac{K(t, z)}{(z - z_0)^2} \right) \, dz \right| dt \leq \frac{M(b - a)}{\rho(\rho - |h|)}|h|,
\]
which $\to 0$ and $h \to 0$. Hence, we can conclude that $f'(z_0)$ exists and:
\[
f'(z_0) = \int_a^b \partial_z K(t, z_0) \, dt.
\]

(30.4) Infinite integral.— Now we consider the case of the infinite integral. We have $K : \mathbb{R}_{\geq 0} \times \Omega \to \mathbb{C}$, and we are going to define $f(z) = \int_0^\infty K(t, z) \, dt$.

Recall (from Calculus II) that the infinite integral is defined as the limit of finite ones:
\[
\int_0^\infty g(t) \, dt = \lim_{R \to \infty} \int_0^R g(t) \, dt.
\]
The existence of such a limit (by Cauchy’s criterion - see Lecture 21, page 2) amounts to saying that: for every $\varepsilon > 0$, we can find R such that:
\[
\text{For every } S > R \text{ we have } \left| \int_R^S g(t) \, dt \right| < \varepsilon.
\]
In particular $\left| \int_R^\infty g(t) \, dt \right| \leq \varepsilon$. Meaning, the integral remaining after R can be made as small as we want. This statement is in fact equivalent to Cauchy’s criterion, because $\int_R^S = \int_\infty^\infty - \int_\infty^S$.

Assumptions on $K(t, z)$. We have to continue imposing the assumptions laid out in §30.1 above. Just to write them again:

Assumption 1. $K(t, z)$ is a continuous function of $(t, z) \in \mathbb{R}_{\geq 0} \times \Omega$.

Assumption 2. The continuity of $K(t, z)$ in z variable is uniform with respect to closed and bounded intervals in \mathbb{R}.

Assumption 3. For fixed $t_0 \in \mathbb{R}_{\geq 0}$, $K(t_0, z)$ is a holomorphic function of z.

Assumption 4. $\partial_z K(t, z)$ is a continuous function of t.

Additionally, we have to assume that \(\int_0^\infty K(t, z) \, dt \) exists, which amounts to the existence of a limit. We will require this limit to exist \textit{uniformly in} \(z \in \Omega \).

Assumption 5. The limit \(\lim_{R \to \infty} \int_0^R K(t, z) \, dt \) exists uniformly in \(z \). To spell it out: for every compact set \(D \subset \mathbb{C} \) contained in \(\Omega \), and every \(\varepsilon > 0 \), we can find \(R \) such that
\[
\left| \int_R^\infty K(t, z) \, dt \right| < \varepsilon \quad \text{for every} \quad z \in D.
\]

Theorem. Let \(K(t, z) \) be a function of two variables \(t \in \mathbb{R}_0^+ \) and \(z \in \Omega \) satisfying Assumptions 1-5 above. Define:
\[
f(z) = \int_0^\infty K(t, z) \, dt
\]
Then, \(f(z) \) is a holomorphic function on \(\Omega \) and \(f'(z) = \int_0^\infty \partial_z K(t, z) \, dt \).

Proof. This theorem is a consequence of Theorem 30.1 and Weierstrass’ theorem on uniform convergence (Lecture 22, §22.6). In a bit more detail, for every \(N \in \mathbb{Z}_{\geq 1} \), define \(f_N(z) = \int_0^N K(t, z) \, dt \). This is a holomorphic function by Theorem 30.1 and the sequence of functions \(\{f_N(z)\}_{N=1}^\infty \) converges uniformly by Assumption 5. So, the limit is a holomorphic function by Weierstrass’ theorem, and the derivative is the uniform limit of \(\{f'_N(z)\} \). The theorem is proved. \(\square \)

(30.5) Laplace transform.-- Let \(\varphi(t) \) be a continuous function of a real variable \(t \), taking values in \(\mathbb{C} \). The \textit{Laplace transform} of \(\varphi \), denoted by \(\mathcal{L}\varphi(z) \), is defined as:
\[
\mathcal{L}\varphi(z) = \int_0^{\infty} \varphi(t)e^{-zt} \, dt
\]

Let us assume that there exists constants (independent of \(t \)), \(r, C \in \mathbb{R}_0^+ \) such that
\[
|\varphi(t)| < Ce^{rt} \quad \text{for every} \quad t \in \mathbb{R}_0^+.
\]

Claim. \(\mathcal{L}\varphi \) is a holomorphic function on \(\Omega = \{ z \in \mathbb{C} : \text{Re}(z) > r \} \).

Proof. In order to use Theorem 30.4, we have to verify Assumptions 1-5 for \(K(t, z) = \varphi(t)e^{-zt} : \mathbb{R}_0^+ \times \Omega \to \mathbb{C} \).

Assumptions 1-4 hold without any difficulty. The only non-trivial thing to check is Assumption 5: \(\lim_{R \to \infty} \int_0^R K(t, z) \, dt \) exists, uniformly in \(z \in \Omega \).

\[^3\text{Recall that we agreed: “uniformly” without any other specifications means “with respect to compact sets }D \subset \mathbb{C} \text{ contained in } \Omega \text{”}\]
Let \(D \subset \Omega \) be a closed and bounded set. Pick \(r_1 > r \) such that \(\text{Re}(z) \geq r_1 \) for every \(z \in D \). Then, for every \(z \in D \) we have \(|e^{-zt}| = e^{-t \text{Re}(z)} \leq e^{-r_1 t} \).

\[
\left| \int_R^\infty \varphi(t)e^{-zt} \, dt \right| \leq \int_R^\infty Ce^{-(r_1-r)t} \, dt = Ce^{-(r_1-r)R} \frac{r_1}{r_1-r}.
\]

So, given \(\varepsilon > 0 \), choose \(R \) large enough so that \(e^{-(r_1-r)R} < \frac{r_1}{C} \varepsilon \) (this can be done since \(\lim_{R \to \infty} e^{-(r_1-r)R} = 0 \)). Then, for every \(z \in D \), we have that \(\left| \int_R^\infty \varphi(t)e^{-zt} \, dt \right| < \varepsilon \). The claim is proved. \(\square \)

Examples.

1. \(\varphi(t) = 1 \). We get \(L\varphi(z) = \int_0^\infty e^{-zt} \, dt = -\frac{1}{z} \left[e^{-zt} \right]_t^\infty \). Assuming \(\text{Re}(z) > 0 \), we can conclude that \(\lim_{t \to \infty} e^{-zt} = 0 \). Thus \(L\varphi(z) = \frac{1}{z} \) for \(\text{Re}(z) > 0 \).

2. \(\varphi(t) = t \). Again we can compute (integration by parts):

\[
L\varphi(z) = \int_0^\infty te^{-zt} \, dt = -\frac{1}{z} \left[te^{-zt} \right]_t^\infty + \frac{1}{z} \int_0^\infty e^{-zt} \, dt = \frac{1}{z^2},
\]

assuming \(\text{Re}(z) > 0 \). Note that the first term on the right–hand side of the equation vanishes under this assumption.

3. (Exercise.) Let \(\varphi(t) = \frac{t^n}{n!} \) (\(n \in \mathbb{Z}_{\geq 0} \)). Prove that \(L\varphi(z) = z^{-n-1} \), for \(\text{Re}(z) > 0 \).

4. (Exercise.) Let \(\varphi(t) = e^t \). Prove that \(L\varphi(z) = \frac{1}{z-1} \), for \(\text{Re}(z) > 1 \).

5. (Exercise.) Let \(\varphi(t) \) be a continuous function of a real variable \(t \). Let \(c \in \mathbb{C} \) be a constant and define \(\psi(t) = e^{ct}\varphi(t) \). Prove the following identity:

\[
L\psi(z) = L\varphi(z-c)
\]

(30.6) Gamma function.– The gamma function \(\Gamma(z) \) was defined by Euler in 1729 as the following infinite integral:

\[
\Gamma(z) = \int_0^\infty t^{z-1}e^{-t} \, dt
\]

We will prove next week that this integral is well–defined for \(\text{Re}(z) > 0 \). For now, I leave you with the following exercise (which is in fact Exercise from Example (3) in §30.5 above):

Exercise. Let \(n \geq 0 \). Prove that \(\int_0^\infty t^n e^{-t} \, dt = n! \)

(This exercise was the motivation behind defining \(\Gamma(z) \) in terms of infinite integral as written above - \(\Gamma \) function was discovered by Euler as a (or the with some additional assumptions) solution to the problem of interpolating points \(\{(n, n!): n \in \mathbb{Z}_{\geq 0}\} \). This problem was suggested to Euler by Goldbach.)