COMPLEX ANALYSIS: LECTURE 30

(30.0) Holomorphic functions defined by integrals. – In this set of notes, we will introduce a method of constructing holomorphic functions via finite and infinite integrals. The general approach is going to be the following:

$$\boxed{\text{Input: } K(t,z): \mathbb{R}_{\geq 0} \times \Omega \to \mathbb{C}} \qquad \qquad \text{Output: } f(z) = \int_0^\infty K(t,z) \, dt$$

Here, $\Omega \subset \mathbb{C}$ is an open set. K(t, z) is a function defined on $t \in \mathbb{R}_{>0}$ and $z \in \Omega$, which takes values in \mathbb{C} . We will have to impose various conditions on K(t, z) (see §30.3 below) in order to ensure two properties:

- $f: \Omega \to \mathbb{C}$ is a holomorphic function.
- $f: \Omega \to \mathbb{C}$ is a nononorphic function. $f'(z_0) = \int_0^\infty \partial_z K(t, z_0) dt$, for every $z_0 \in \Omega$. Here $\partial_z K$ is the derivative of K(t, z)with respect to the second variable z. More explicitly

$$\partial_z K(t, z_0) = \lim_{\substack{h \to 0 \\ h \in \mathbb{C}}} \frac{K(t, z_0 + h) - K(t, z_0)}{h}$$

(Among other things, we will assume that this limit exists.)

Remarks.

- (1) Such integrals appear very frequently in the theory of differential equations, asymptotic analysis and physics. A special case of great importance, known as Laplace transform, is given in $\S30.5$ below.
- (2) The term *infinite integrals* was coined by Hardy 1 in 1902, to suggest the analogy between \int_0^∞ and $\sum_{i=1}^\infty$. According to this philosophy, the diagram above is a continuous version of the one I sketched in Lecture 21, §21.0. And, the main theorem of these notes (§30.3) is the continuous analogue of Weierstrass' theorem on uniform convergence (Lecture 22, §22.6). By "continuous version", I mean: instead of summing over discrete subscript $n = 0, 1, 2, \ldots$, we are "summing over" continuous parameter $t \in (0, \infty).$

(30.1) Finite case. – Let us begin by considering the finite integrals first. The set up is as follows. We are given a closed bounded interval $[a,b] \subset \mathbb{R}$, an open set $\Omega \subset \mathbb{C}$, and a

¹G.H. Hardy (1877-1947)

function K(t, z) of two variables (taking values in \mathbb{C}): $K : [a, b] \times \Omega \to \mathbb{C}$. Assume that this function satisfies the following hypotheses.

Assumption 1. K(t, z) is a continuous function of $(t, z) \in [a, b] \times \Omega$.

Assumption 2. The continuity of K(t, z), in the variable $z \in \Omega$, is uniform with respect to t.

Assumption 3. For a fixed $t_0 \in [a, b]$, the function $K(t_0, -) : \Omega \to \mathbb{C}$ is holomorphic.

Assumption 4. $\partial_z K(t, z)$ is a continuous function of t.

Theorem. For K(t, z) satisfying Assumptions 1-4 above, let us define $f : \Omega \to \mathbb{C}$ by:

$$f(z) = \int_{a}^{b} K(t, z) \, dt$$

Then, f is a holomorphic function and $f'(z_0) = \int_a^b \partial_z K(t, z_0) dt$.

(30.2) Remarks on the assumptions 1-4.–

(1) Assumption 1 is stronger than saying that K(t, z) is continuous function of t and z individually. You must have seen the following example in Calculus III. Let g(x, y) be a real valued function of two real variables, defined by:

$$g(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } x = y = 0 \end{cases}$$

Then, for a fixed $x_0 \in \mathbb{R}$, $g(x_0, y)$ is a continuous function of y (similarly, for a fixed y_0 , $g(x, y_0)$ is a continuous function of x), but it is not a continuous function of (x, y) together.

(2) Recall that K(t, z) is continuous at $z_0 \in \Omega$ (assuming $t \in [a, b]$ is fixed) means: given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$0 < |z - z_0| < \delta$$
 implies that $|K(t, z) - K(t, z_0)| < \epsilon$.

This δ , in general, will depend on t. Assumption 2 means that a δ can be chosen to work for all $t \in [a, b]$ simultaneously.

Assumption 2 is actually not needed at all. It follows from assumption 1 (using Heine– Borel theorem given in Optional Reading A §A.7). I have only it solely for the sake of convenience in writing the proof below.

(3) Assumption 3 is absolutely crucial. It ensures that the following limit exists (for any $t \in [a, b]$ and $z_0 \in \Omega$):

$$\lim_{\substack{h \to 0\\h \in \mathbb{C}}} \frac{K(t, z_0 + h) - K(t, z_0)}{h} ,$$

LECTURE 30

which we define to be $\partial_z K(t, z_0)$. This assumption will also allow us to write (for a fixed t), $K(t, z_0)$ as a contour integral, using Cauchy's integral formula.

(4) Now that $\partial_z K$ is defined, assumption 4 requires it to be continuous in $t \in [a, b]$ variable, so that the integral $\int_{a}^{b} \partial_z K(t, z) dt$ exists.

(30.3) Proof of Theorem 30.1.–² Theorem 30.2 is proved exactly as Weierstrass' theorem on uniform convergence (Lecture 22, §22.6). We begin by proving that f(z) is continuous.

So, let $z_0 \in \Omega$ and let $\varepsilon > 0$ be given. According to Assumtion 2, we can find $\delta > 0$ such that:

$$0 < |z - z_0| < \delta$$
 implies $|K(t, z) - K(t, z_0)| < \frac{\varepsilon}{b - a}$ for every $t \in [a, b]$.

With this δ , we can conclude that, for every z such that $0 < |z - z_0| < \delta$, we have:

$$|f(z) - f(z_0)| = \left| \int_a^b (K(t, z) - K(t, z_0)) \, dt \right| \le \int_a^b |K(t, z) - K(t, z_0)| \, dt$$

By the important inequality $(\S 12.7)$, we get

$$|f(z) - f(z_0)| < \frac{\varepsilon}{b-a} \cdot (b-a) = \varepsilon.$$

Hence f(z) is continuous.

Next, we will prove that $f'(z_0)$ exists for every $z_0 \in \Omega$. First of all, let us pick a positive real number $r \in \mathbb{R}_{>0}$ so that the open disc $D(z_0; r) \subset \Omega$ (exists, since Ω is open). Choose another number $0 < \rho < r$ so that the counterclockwise oriented circle C_{ρ} of radius ρ , centered at z_0 lies in Ω . By Cauchy's integral formula, for every $w \in D(z_0; \rho)$ (and $t \in [a, b]$) we have:

$$K(t,w) = \frac{1}{2\pi \mathbf{i}} \int_{C_{\rho}} \frac{K(t,z)}{z-w} \, dz$$

(we are using Assumption 3 - for a fixed t, K(t, z) is a holomorphic function of $z \in \Omega$).

Now we are ready to show that the limit $\lim_{h\to 0} \frac{f(z_0+h) - f(z_0)}{h}$ exists. We are going to assume that $|h| < \rho$. This gives:

$$\frac{f(z_0+h) - f(z_0)}{h} = \frac{1}{h} \int_a^b (K(t, z_0+h) - K(t, z_0)) dt$$
$$= \frac{1}{2\pi \mathbf{i}h} \int_a^b \left(\int_{C_\rho} \frac{K(t, z)}{z - z_0 - h} - \frac{K(t, z)}{z - z_0} dz \right) dt$$
$$= \frac{1}{2\pi \mathbf{i}} \int_a^b \left(\int_{C_\rho} \frac{K(t, z)}{(z - z_0 - h)(z - z_0)} dz \right) dt$$

²Optional

LECTURE 30

Now we have to prove that the limit as $h \to 0$ of the last integral exists and is given by $\int_{a}^{b} \partial_{z} K(t, z_{0}) dt$ (which exists by Assumption 4). By Cauchy's integral formula, we have:

$$\partial_z K(t, z_0) = \frac{1}{2\pi \mathbf{i}} \int_{C_{\rho}} \frac{K(t, z)}{(z - z_0)^2} dz.$$

Now our proof proceeds as the one given in Lecture 17, §17.2. Let M be the maximum of |K(t,z)| as $t \in [a,b]$ and z lies on C_{ρ} (this is a compact set, and K(t,z) is continuous in both variables jointly by Assmption 1 - so absolute maximum exists and is finite). We obtain the following bound (see §17.2 for details of this computation):

$$\left| \frac{1}{2\pi \mathbf{i}} \int_{a}^{b} \left(\int_{C_{\rho}} \left(\frac{K(t,z)}{(z-z_{0}-h)(z-z_{0})} - \frac{K(t,z)}{(z-z_{0})^{2}} \right) dz \right) dt \right| \leq \frac{M(b-a)}{\rho(\rho-|h|)} |h|$$

which $\rightarrow 0$ and $h \rightarrow 0$. Hence, we can conclude that $f'(z_0)$ exists and:

$$f'(z_0) = \int_a^b \partial_z K(t, z_0) \, dt$$

(30.4) Infinite integral. Now we consider the case of the infinite integral. We have $K : \mathbb{R}_{\geq 0} \times \Omega \to \mathbb{C}$, and we are going to define $f(z) = \int_0^\infty K(t, z) dt$.

Recall (from Calculus II) that the infinite integral is defined as the limit of finite ones: $\int_{0}^{\infty} g(t) dt = \lim_{R \to \infty} \int_{0}^{R} g(t) dt.$ The existence of such a limit (by Cauchy's criterion - see Lecture 21, page 2) amounts to saying that: for every $\varepsilon > 0$, we can find R such that:

For every S > R we have $\left| \int_{R}^{S} g(t) dt \right| < \varepsilon$.

In particular $\left| \int_{R}^{\infty} g(t) dt \right| \leq \varepsilon$. Meaning, the integral remaining after R can be made as small as we want. This statement is in fact equivalent to Cauchy's criterion, because $\int_{R}^{S} = \int_{R}^{\infty} - \int_{S}^{\infty}$.

Assumptions on K(t, z). We have to continue imposing the assumptions laid out in §30.1 above. Just to write them again:

Assumption 1. K(t, z) is a continuous function of $(t, z) \in \mathbb{R}_{\geq 0} \times \Omega$.

Assumption 2. The continuity of K(t, z) in z variable is uniform with respect to closed and bounded intervals in \mathbb{R} .

Assumption 3. For fixed $t_0 \in \mathbb{R}_{>0}$, $K(t_0, z)$ is a holomorphic function of z.

Assumption 4. $\partial_z K(t, z)$ is a continuous function of t.

Additionally, we have to assume that $\int_0^\infty K(t, z) dt$ exists, which amounts to the existence of a limit. We will require this limit to exist *uniformly in* $z \in \Omega^{-3}$.

Assmption 5. The limit $\lim_{R\to\infty} \int_0^R K(t,z) dt$ exists uniformly in z. To spell it out: for every compact set $D \subset \mathbb{C}$ contained in Ω , and every $\varepsilon > 0$, we can find R such that

$$\left|\int_{R}^{\infty} K(t,z) \, dt\right| < \varepsilon \text{ for every } z \in D.$$

Theorem. Let K(t, z) be a function of two variables $t \in \mathbb{R}_{\geq 0}$ and $z \in \Omega$ satisfying Assumptions 1-5 above. Define:

$$f(z) = \int_0^\infty K(t, z) \, dt$$

Then, f(z) is a holomorphic function on Ω and $f'(z) = \int_0^\infty \partial_z K(t, z) dt$.

Proof. This theorem is a consequence of Theorem 30.1 and Weierstrass' theorem on uniform convergence (Lecture 22, §22.6). In a bit more detail, for every $N \in \mathbb{Z}_{\geq 1}$, define $f_N(z) = \int_0^N K(t, z) dt$. This is a holomorphic function by Theorem 30.1 and the sequence of functions $\{f_N(z)\}_{N=1}^{\infty}$ converges uniformly by Assumption 5. So, the limit is a holomorphic function by Weierstrass' theorem, and the derivative is the uniform limit of $\{f'_N(z)\}$. The theorem is proved.

(30.5) Laplace transform. – Let $\varphi(t)$ be a continuous function of a real variable t, taking values in \mathbb{C} . The Laplace transform of φ , denoted by $\mathcal{L}\varphi(z)$, is defined as:

$$\mathcal{L}\varphi(z) = \int_0^\infty \varphi(t) e^{-zt} \, dt$$

Let us assume that there exists constants (independent of t), $r, C \in \mathbb{R}_{>0}$ such that $|\varphi(t)| < Ce^{rt}$ for every $t \in \mathbb{R}_{\geq 0}$.

Claim. $\mathcal{L}\varphi$ is a holomorphic function on $\Omega = \{z \in \mathbb{C} : \operatorname{Re}(z) > r\}.$

Proof. In order to use Theorem 30.4, we have to verify Assumptions 1-5 for $K(t, z) = \varphi(t)e^{-zt}$: $\mathbb{R}_{>0} \times \Omega \to \mathbb{C}$.

Assumptions 1-4 hold without any difficulty. The only non-trivial thing to check is Assumption 5: $\lim_{R\to\infty} \int_0^R K(t,z) dt$ exists, uniformly in $z \in \Omega$.

³Recall that we agreed: "uniformly" without any other specifications means "with respect to compact sets $D \subset \mathbb{C}$ contained in Ω "

Let $D \subset \Omega$ be a closed and bounded set. Pick $r_1 > r$ such that $\operatorname{Re}(z) \ge r_1$ for every $z \in D$. Then, for every $z \in D$ we have $|e^{-zt}| = e^{-t \operatorname{Re}(z)} \le e^{-r_1 t}$.

$$\left| \int_{R}^{\infty} \varphi(t) e^{-zt} dt \right| \leq \int_{R}^{\infty} C e^{-(r_1 - r)t} dt = C \frac{e^{-(r_1 - r)R}}{r_1 - r}.$$

So, given $\varepsilon > 0$, choose R large enough so that $e^{-(r_1-r)R} < \frac{r_1-r}{C}\varepsilon$ (this can be done since $\lim_{R \to \infty} e^{-(r_1-r)R} = 0$). Then, for every $z \in D$, we have that $\left| \int_R^{\infty} \varphi(t) e^{-zt} dt \right| < \varepsilon$. The claim is proved.

Examples.

- (1) $\varphi(t) = 1$. We get $\mathcal{L}\varphi(z) = \int_0^\infty e^{-zt} dt = -\frac{1}{z} \left[e^{-zt} \right]_{t=0}^\infty$. Assuming $\operatorname{Re}(z) > 0$, we can conclude that $\lim_{t\to\infty} e^{-zt} = 0$. Thus $\mathcal{L}\varphi(z) = \frac{1}{z}$ for $\operatorname{Re}(z) > 0$.
- (2) $\varphi(t) = t$. Again we can compute (integration by parts):

$$\mathcal{L}\varphi(z) = \int_0^\infty t e^{-zt} \, dt = -\frac{1}{z} \left[t e^{-zt} \right]_{t=0}^\infty + \frac{1}{z} \int_0^\infty e^{-zt} \, dt = \frac{1}{z^2} \; ,$$

assuming $\operatorname{Re}(z) > 0$. Note that the first term on the right-hand side of the equation vanishes under this assumption.

- (3) (*Exercise.*) Let $\varphi(t) = \frac{t^n}{n!}$ $(n \in \mathbb{Z}_{\geq 0})$. Prove that $\mathcal{L}\varphi(z) = z^{-n-1}$, for $\operatorname{Re}(z) > 0$.
- (4) (*Exercise.*) Let $\varphi(t) = e^t$. Prove that $\mathcal{L}\varphi(z) = \frac{1}{z-1}$, for $\operatorname{Re}(z) > 1$.
- (5) (*Exercise.*) Let $\varphi(t)$ be a continuous function of a real variable t. Let $c \in \mathbb{C}$ be a constant and define $\psi(t) = e^{ct}\varphi(t)$. Prove the following identity:

$$\mathcal{L}\psi(z) = \mathcal{L}\varphi(z-c)$$

(30.6) Gamma function. – The gamma function $\Gamma(z)$ was defined by Euler in 1729 as the following infinite integral:

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \, dt$$

We will prove next week that this integral is well-defined for $\operatorname{Re}(z) > 0$. For now, I leave you with the following exercise (which is in fact Exercise from Example (3) in §30.5 above): *Exercise*. Let $n \ge 0$. Prove that $\int_0^\infty t^n e^{-t} dt = n!$

(This exercise was the motivation behind defining $\Gamma(z)$ in terms of infinite integral as written above - Γ function was discovered by Euler as a (or *the* with some additional assumptions) solution to the problem of interpolating points $\{(n, n!) : n \in \mathbb{Z}_{\geq 0}\}$. This problem was suggested to Euler by Goldbach.)