COMPLEX ANALYSIS: LECTURE 31

(31.0) Gamma function. – The topic of the next two lecture notes is Euler's Gamma function. Denoted by $\Gamma(z)^1$, this function was discovered by Euler in 1729, in an attempt to extend the definition of factorial.

The problem of interpolating discrete set of points $\{(n, n!) : n \in \mathbb{Z}_{\geq 0}\}$ in \mathbb{R}^2 was proposed by Goldback in 1720. More precisely, he asked for a real-valued function of a real variable f(x) such that f(n) = n! Gamma function was defined by Euler as a solution to this problem. I recommend the following survey article for the context and history of Gamma function:

Philip J. Davis. Leonhard Euler's integral: a historical profile of gamma function. The American Mathematical Monthly vol. 66 (1959), 849–869.

You can download this paper at:

https://people.math.osu.edu/gautam.42/S20/DavisGammaFunction.pdf

(31.1) What is in these notes.–

- (1) A definition of $\Gamma(z)$ is given in §31.2 below, using an infinite integral of the kind studied in Lecture 30. We will see a proof of the fact that $\int_0^\infty t^{z-1}e^{-t} dt$ defines a holomorphic function on the right half-plane $\{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$ (denoted by \mathbb{H} below), which we define as $\Gamma(z)$. The proof of the convergence of this infinite integral is optional.
- (2) We show that $\Gamma(n) = (n-1)!$ for every $n \in \mathbb{Z}_{\geq 1}$, in §31.3. In §31.4, we prove that $\Gamma(z)$ satisfies the following difference equation: $\Gamma(z+1) = z\Gamma(z)$. This allows us to extend the domain of $\Gamma(z)$, from the right half-plane \mathbb{H} to $\mathbb{C} \setminus \{0, -1, -2, \ldots\}$. Hence, $\Gamma : \mathbb{C} \dashrightarrow \mathbb{C}$ is a *meromorphic function* with poles of order 1 at $\mathbb{Z}_{\leq 0}$.
- (3) In §31.5, we will use the technique for computing Gaussian integrals to determine the value of $\Gamma(z)$ at $z = \frac{1}{2}$: $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.
- (4) As an application of the Gamma function, we compute (real, definite) integrals of the following form: $\int_0^1 x^{p-1} (1-x)^{q-1} dx$ in §31.6.

(31.2) Euler's integral. Let $\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$. For $t \in \mathbb{R}_{>0}$, recall that we define: $t^{z-1} = e^{(z-1)\ln(t)}$. Now, consider the following infinite integral:

¹This notation was introduced by Legendre in 1814.

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \, dt$$

Theorem. This infinite integral defines $\Gamma(z)$ as a holomorphic function on the domain \mathbb{H} .

Proof. ² This proof uses Theorem 30.4 from Lecture 30, page 5. In the notational conventions of Lecture 30, here we have a function $K(t, z) = t^{z-1}e^{-t}$ defined on $(t, z) \in \mathbb{R}_{>0} \times \mathbb{H}$.

In order to prove the theorem, we have to verify Assumptions 1-5 laid out in Lecture 30, §30.4. Note that Assumptions 1-4 hold trivially for our K(t, z). Assumption 5 needs to be checked, both near 0 and ∞ since K(t, z) is not defined at t = 0. Let us spell out what exactly do we have to prove.

To prove: Given a compact subset $D \subset \mathbb{H}$, and $\varepsilon > 0$, there exist R > 0 and r > 0 such that:

(1)
$$\left| \int_{0}^{s} t^{z-1} e^{-t} dt \right| < \varepsilon$$
 for every $0 < s < r$ and $z \in D$.
(2) $\left| \int_{S}^{\infty} t^{z-1} e^{-t} dt \right| < \varepsilon$ for every $S > R$ and $z \in D$.

Let us choose $A, B \in \mathbb{R}_{>0}$ such that for every $z \in D$, $A < \operatorname{Re}(z) < B$. This can be done, since D is a closed and bounded set contained in $\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$ (see Figure 1 below).

FIGURE 1. Given a compact set D in the half-plane $\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$, we can find $A, B \in \mathbb{R}_{>0}$ such that $A < \operatorname{Re}(z) < B$ for every $z \in D$.

Now let us prove (1). Note that since A > 0, $x^A = e^{A \ln(x)} \to 0$ as $x \to 0^+$ (i.e, from the right). Choose r < 1 small enough so that $r^A < \varepsilon A$ (remember A and ε are fixed from the

²Optional.

start, so we are just picking some $r < Min(1, (\varepsilon A)^{\frac{1}{4}}))$. For 0 < t < 1, ln(t) is negative, which implies:

$$|t^{z-1}| = e^{\operatorname{Re}(z-1)\ln(t)} \le e^{(A-1)\ln(t)} = t^{A-1} \text{ for } 0 < t < 1, z \in D.$$

Clearly $e^{-t} < 1$ for t > 0. Combining these observations, we have, for every 0 < s < r:

$$\left|\int_0^s t^{z-1}e^{-t} dt\right| \le \left|\int_0^s t^{A-1} dt\right| = \left[\frac{t^A}{A}\right]_{t=0}^{t=s} = \frac{s^A}{A} < \varepsilon.$$

This finishes the proof of (1).

Let us prove (2) now. Note that for t > 1, we have $\ln(t) > 0$, which implies: $|t^{z-1}| = t^{\operatorname{Re}(z-1)} \leq t^{B-1}$, for t > 1 and $z \in D$. Using the fact that $t^{B-1}e^{-\frac{t}{2}} \to 0$ as $t \to \infty$, we can choose $t_0 \in \mathbb{R}_{>0}$ be such that

$$t^{B-1}e^{-\frac{t}{2}} \le 1$$
 for every $t \ge t_0$.

Now pick R > 1 to be larger than t_0 , and such that $e^{-\frac{R}{2}} < \frac{\varepsilon}{2}$. Then, for every S > R we have:

$$\left| \int_{S}^{\infty} t^{z-1} e^{-t} dt \right| \leq \int_{S}^{\infty} \left(t^{B-1} e^{-\frac{t}{2}} \right) e^{-\frac{t}{2}} dt \leq \int_{S}^{\infty} e^{-\frac{t}{2}} dt = \left[-2e^{-\frac{t}{2}} \right]_{t=S}^{\infty}$$
$$= 2e^{-\frac{S}{2}} < \varepsilon.$$

(31.3) Relation with factorial. As mentioned in Lecture 30, §30.6, this definition generalizes the factorial function $n \mapsto n!$, which is only defined for $n \in \mathbb{Z}_{\geq 0}$ (with the convention that 0! = 1). To see this, we have the following computation (Exercise 30.6 from Lecture 30).

Claim. For any $n \in \mathbb{Z}_{\geq 0}$, $\int_0^\infty t^n e^{-t} dt = n!$. Therefore, we have:

$$\Gamma(n) = (n-1)!$$
 for every $n \in \mathbb{Z}_{\geq 1}$

Proof. This proof is by induction on n. For n = 0, we have:

$$\int_0^\infty e^{-t} dt = \left[-e^{-t} \right]_{t=0}^{t=\infty} = 1 = 0!$$

Assuming that the statement has been verified for all $n = 0, 1, ..., \ell$, let us prove it for $\ell + 1$. This step uses integration by parts, and the fact that $t^N e^{-t} \to 0$ as $t \to \infty$, for any $N \in \mathbb{Z}_{\geq 0}$.

$$\int_0^\infty t^{\ell+1} e^{-t} dt = \left[-t^{\ell+1} e^{-t} \right]_{t=0}^{t=\infty} + (\ell+1) \int_0^\infty t^\ell e^{-t} dt$$
$$= 0 + (\ell+1)\ell! = (\ell+1)!$$

(31.4) A difference equation for $\Gamma(z)$.— One of the most important properties of $\Gamma(z)$ is its behaviour under $z \mapsto z + 1$. We have the following equation:

$$\Gamma(z+1) = z\Gamma(z)$$

Proof. This proof is a mild generalization of the one given in the previous section. Namely, we have:

$$\Gamma(z+1) - z\Gamma(z) = \int_0^\infty (t^z - zt^{z-1})e^{-t} dt = -\int_0^\infty \frac{d}{dt} (t^z e^{-t}) dt$$
$$= \left[-t^z e^{-t}\right]_{t=0}^{t=\infty}$$
hat $\operatorname{Re}(z) > 0$, $\lim t^z e^{-t} = 0$, and $\lim t^z = 0$. Hence,

For z such that $\operatorname{Re}(z) > 0$, $\lim_{t \to \infty} t^z e^{-t} = 0$, and $\lim_{t \to 0^+} t^z = 0$. Hence, $\Gamma(z+1) = z\Gamma(z) = 0$

$$\Gamma(z+1) - z\Gamma(z) = 0$$

This relation allows us to *extend* the domain of $\Gamma(z)$ to $\Omega = \mathbb{C} \setminus \{0, -1, -2, \ldots\} = \mathbb{C} \setminus \mathbb{Z}_{\leq 0}$, as follows. A repeated application of $\Gamma(z + 1) = z\Gamma(z)$, gives us the following, for every $N \in \mathbb{Z}_{\geq 1}$:

$$\Gamma(z+N) = (z+N-1)(z+N-2)\cdots z\Gamma(z)$$

Therefore, if we want to define $\Gamma(z)$ on the half-plane $\mathbb{H}_{-N} = \{z \in \mathbb{C} : \operatorname{Re}(z) > -N\}$, then we can set:

$$\Gamma(z) = \frac{\Gamma(z+N)}{z(z+1)\cdots(z+N-1)} = \frac{1}{z(z+1)\cdots(z+N-1)} \int_0^\infty t^{z+N-1} e^{-t} dt$$

The last integral being defined, since $\operatorname{Re}(z+N) > 0$. Note that, according to this definition, $\Gamma(z)$ in defined as a *meromorphic* function, with poles at $z = 0, -1, -2, \ldots$, which are all of order 1.

Example. Let us compute $\underset{z=0}{\operatorname{Res}}(\Gamma(z))$. Since z = 0 is pole of order 1, we have:

$$\operatorname{Res}_{z=0}\left(\Gamma(z)\right) = \lim_{z \to 0} z\Gamma(z) = \lim_{z \to 0} \Gamma(z+1) = \Gamma(1) = 1.$$

where we used that $z\Gamma(z) = \Gamma(z+1)$.

For an arbitrary $n \in \mathbb{Z}_{\geq 1}$, we can compute the residue $\operatorname{Res}_{z=-n}(\Gamma(z))$ by (i) change of variables w = z + n and (ii) repeated application of $\Gamma(z+1) = z\Gamma(z)$:

$$\operatorname{Res}_{z=-n} \left(\Gamma(z) \right) = \operatorname{Res}_{w=0} \left(\Gamma(w-n) \right) = \operatorname{Res}_{w=0} \left(\frac{\Gamma(w)}{(w-1)(w-2)\cdots(w-n)} \right) = \frac{(-1)^n}{n!}$$

(31.5) $\Gamma\left(\frac{1}{2}\right)$. Let us try to compute the value of $\Gamma(z)$ at $z = \frac{1}{2}$. We will see this result again in the next lecture, using another expression for the Gamma function. The answer is:

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

Proof. By definition, $\Gamma\left(\frac{1}{2}\right) = \int_0^\infty t^{-\frac{1}{2}} e^{-t} dt$. Consider the change of variables $t = u^2$, which changes this integral to:

$$\Gamma\left(\frac{1}{2}\right) = 2\int_0^\infty e^{-u^2} du = \int_{-\infty}^\infty e^{-u^2} du.$$

This last integral is known as *Gaussian integral* and is computed as follows. Let $I = \int_{-\infty}^{\infty} e^{-u^2} du$. Then:

$$I^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-u^2 - v^2} \, du \, dv.$$

Changing to polar coordinates: $u = r \cos(\theta)$ and $v = r \sin(\theta)$ changes the area element du dv to $r dr d\theta$ (as was done in Calculus III).

$$I^{2} = \int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^{2}} r \, dr \, d\theta = 2\pi \left[-\frac{e^{-r^{2}}}{2} \right]_{r=0}^{r=\infty} = \pi$$

Hence, $I = \sqrt{\pi}$ as claimed.

(31.6) Computation of a real integral using Gamma function. Let $p, q \in \mathbb{R}_{>0}$ and consider the following definite integral

$$B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} \, dx$$

Remark. If we set $x = \cos^2(\theta)$, so that $dx = -2\sin(\theta)\cos(\theta) d\theta$, and the limits of the integral become $\int_{\frac{\pi}{2}}^{0}$, then the integral in question becomes:

$$B(p,q) = 2\int_0^{\frac{\pi}{2}} \cos^{2p-1}(\theta) \sin^{2q-1}(\theta) \, d\theta$$

This signifies the use of B(p,q) in computing various definite integrals involving sines and cosines.

Euler computed the value of B(p,q) in terms of his Gamma function as:

$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

Proof. This proof is a generalization of the computation of the Gaussian integral from the previous section. We begin by writing:

$$\Gamma(p)\Gamma(q) = \int_0^\infty \int_0^\infty t_1^{p-1} e^{-t_1} t_2^{q-1} e^{-t_2} dt_1 dt_2$$

Change of variables: $t_1 = u_1^2$ and $t_2 = u_2^2$ allows us to write it as:

$$\Gamma(p)\Gamma(q) = 4 \int_0^\infty \int_0^\infty e^{-u_1^2 - u_2^2} u_1^{2p-1} u_2^{2q-1} \, du_1 \, du_2$$

Set $u_1 = r \cos(\theta)$ and $u_2 = r \sin(\theta)$ as in the previous section. Since (u_1, u_2) are in the first quadrant of \mathbb{R}^2 , the limits of integration are: $0 < r < \infty$ and $0 \le \theta \le \frac{\pi}{2}$. We get:

$$\Gamma(p)\Gamma(q) = 4\left(\int_0^\infty e^{-r^2} r^{2(p+q)-1} dr\right) \cdot \left(\int_0^{\frac{\pi}{2}} \cos^{2p-1}(\theta) \sin^{2q-1}(\theta) d\theta\right)$$

The first term gives us $\frac{\Gamma(p+q)}{2}$, since upon setting $r^2 = t$ we have:

$$\int_0^\infty e^{-r^2} r^{2(p+q)-1} dr = \frac{1}{2} \int_0^\infty e^{-t} t^{p+q-1} dt = \frac{\Gamma(p+q)}{2}$$

And the second term gives us $\frac{B(p,q)}{2}$ (see the remark above). Hence: $\Gamma(p)\Gamma(q) = \Gamma(p+q)B(p,q)$

as claimed.