COMPLEX ANALYSIS: LECTURE 31

(31.0) Gamma function.- The topic of the next two lecture notes is Euler's Gamma function. Denoted by $\Gamma(z)^{11}$, this function was discovered by Euler in 1729, in an attempt to extend the definition of factorial.

The problem of interpolating discrete set of points $\left\{(n, n!): n \in \mathbb{Z}_{\geq 0}\right\}$ in \mathbb{R}^{2} was proposed by Goldback in 1720. More precisely, he asked for a real-valued function of a real variable $f(x)$ such that $f(n)=n$! Gamma function was defined by Euler as a solution to this problem. I recommend the following survey article for the context and history of Gamma function:

Philip J. Davis. Leonhard Euler's integral: a historical profile of gamma function. The American Mathematical Monthly vol. 66 (1959), 849-869.
You can download this paper at:
https://people.math.osu.edu/gautam.42/S20/DavisGammaFunction.pdf
(31.1) What is in these notes.-
(1) A definition of $\Gamma(z)$ is given in $\S 31.2$ below, using an infinite integral of the kind studied in Lecture 30. We will see a proof of the fact that $\int_{0}^{\infty} t^{z-1} e^{-t} d t$ defines a holomorphic function on the right half-plane $\{z \in \mathbb{C}: \operatorname{Re}(z)>0\}$ (denoted by \mathbb{H} below), which we define as $\Gamma(z)$. The proof of the convergence of this infinite integral is optional.
(2) We show that $\Gamma(n)=(n-1)$! for every $n \in \mathbb{Z}_{\geq 1}$, in $\S 31.3$. In $\S 31.4$, we prove that $\Gamma(z)$ satisfies the following difference equation: $\Gamma(z+1)=z \Gamma(z)$. This allows us to extend the domain of $\Gamma(z)$, from the right half-plane \mathbb{H} to $\mathbb{C} \backslash\{0,-1,-2, \ldots\}$. Hence, $\Gamma: \mathbb{C} \rightarrow \mathbb{C}$ is a meromorphic function with poles of order 1 at $\mathbb{Z}_{\leq 0}$.
(3) In $\S 31.5$, we will use the technique for computing Gaussian integrals to determine the value of $\Gamma(z)$ at $z=\frac{1}{2}: \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
(4) As an application of the Gamma function, we compute (real, definite) integrals of the following form: $\int_{0}^{1} x^{p-1}(1-x)^{q-1} d x$ in $\S 31.6$.
(31.2) Euler's integral.- Let $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Re}(z)>0\}$. For $t \in \mathbb{R}_{>0}$, recall that we define: $t^{z-1}=e^{(z-1) \ln (t)}$. Now, consider the following infinite integral:

[^0]$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t
$$

Theorem. This infinite integral defines $\Gamma(z)$ as a holomorphic function on the domain \mathbb{H}.
Proof. ${ }^{2}$ This proof uses Theorem 30.4 from Lecture 30, page 5. In the notational conventions of Lecture 30, here we have a function $K(t, z)=t^{z-1} e^{-t}$ defined on $(t, z) \in \mathbb{R}_{>0} \times \mathbb{H}$.

In order to prove the theorem, we have to verify Assumptions 1-5 laid out in Lecture 30, §30.4. Note that Assumptions $1-4$ hold trivially for our $K(t, z)$. Assumption 5 needs to be checked, both near 0 and ∞ since $K(t, z)$ is not defined at $t=0$. Let us spell out what exactly do we have to prove.

To prove: Given a compact subset $D \subset \mathbb{H}$, and $\varepsilon>0$, there exist $R>0$ and $r>0$ such that:

$$
\begin{aligned}
& \text { (1) }\left|\int_{0}^{s} t^{z-1} e^{-t} d t\right|<\varepsilon \text { for every } 0<s<r \text { and } z \in D . \\
& \text { (2) }\left|\int_{S}^{\infty} t^{z-1} e^{-t} d t\right|<\varepsilon \text { for every } S>R \text { and } z \in D .
\end{aligned}
$$

Let us choose $A, B \in \mathbb{R}_{>0}$ such that for every $z \in D, A<\operatorname{Re}(z)<B$. This can be done, since D is a closed and bounded set contained in $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Re}(z)>0\}$ (see Figure 1 below).

Figure 1. Given a compact set D in the half-plane $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Re}(z)>0\}$, we can find $A, B \in \mathbb{R}_{>0}$ such that $A<\operatorname{Re}(z)<B$ for every $z \in D$.

Now let us prove (1). Note that since $A>0, x^{A}=e^{A \ln (x)} \rightarrow 0$ as $x \rightarrow 0^{+}$(i.e, from the right). Choose $r<1$ small enough so that $r^{A}<\varepsilon A$ (remember A and ε are fixed from the

[^1]start, so we are just picking some $\left.r<\operatorname{Min}\left(1,(\varepsilon A)^{\frac{1}{A}}\right)\right)$. For $0<t<1, \ln (t)$ is negative, which implies:
$$
\left|t^{z-1}\right|=e^{\operatorname{Re}(z-1) \ln (t)} \leq e^{(A-1) \ln (t)}=t^{A-1} \text { for } 0<t<1, z \in D
$$

Clearly $e^{-t}<1$ for $t>0$. Combining these observations, we have, for every $0<s<r$:

$$
\left|\int_{0}^{s} t^{z-1} e^{-t} d t\right| \leq\left|\int_{0}^{s} t^{A-1} d t\right|=\left[\frac{t^{A}}{A}\right]_{t=0}^{t=s}=\frac{s^{A}}{A}<\varepsilon
$$

This finishes the proof of (1).
Let us prove (2) now. Note that for $t>1$, we have $\ln (t)>0$, which implies: $\left|t^{z-1}\right|=$ $t^{\operatorname{Re}(z-1)} \leq t^{B-1}$, for $t>1$ and $z \in D$. Using the fact that $t^{B-1} e^{-\frac{t}{2}} \rightarrow 0$ as $t \rightarrow \infty$, we can choose $t_{0} \in \mathbb{R}_{>0}$ be such that

$$
t^{B-1} e^{-\frac{t}{2}} \leq 1 \text { for every } t \geq t_{0}
$$

Now pick $R>1$ to be larger than t_{0}, and such that $e^{-\frac{R}{2}}<\frac{\varepsilon}{2}$. Then, for every $S>R$ we have:

$$
\begin{gathered}
\left|\int_{S}^{\infty} t^{z-1} e^{-t} d t\right| \leq \int_{S}^{\infty}\left(t^{B-1} e^{-\frac{t}{2}}\right) e^{-\frac{t}{2}} d t \leq \int_{S}^{\infty} e^{-\frac{t}{2}} d t=\left[-2 e^{-\frac{t}{2}}\right]_{t=S}^{\infty} \\
=2 e^{-\frac{S}{2}}<\varepsilon
\end{gathered}
$$

(31.3) Relation with factorial.- As mentioned in Lecture 30, $\S 30.6$, this definition generalizes the factorial function $n \mapsto n$!, which is only defined for $n \in \mathbb{Z}_{\geq 0}$ (with the convention that $0!=1$). To see this, we have the following computation (Exercise 30.6 from Lecture 30).

Claim. For any $n \in \mathbb{Z}_{\geq 0}, \int_{0}^{\infty} t^{n} e^{-t} d t=n!$. Therefore, we have:

$$
\Gamma(n)=(n-1) \text { ! for every } n \in \mathbb{Z}_{\geq 1}
$$

Proof. This proof is by induction on n. For $n=0$, we have:

$$
\int_{0}^{\infty} e^{-t} d t=\left[-e^{-t}\right]_{t=0}^{t=\infty}=1=0!
$$

Assuming that the statement has been verified for all $n=0,1, \ldots \ell$, let us prove it for $\ell+1$. This step uses integration by parts, and the fact that $t^{N} e^{-t} \rightarrow 0$ as $t \rightarrow \infty$, for any $N \in \mathbb{Z}_{\geq 0}$.

$$
\begin{aligned}
\int_{0}^{\infty} t^{\ell+1} e^{-t} d t & =\left[-t^{\ell+1} e^{-t}\right]_{t=0}^{t=\infty}+(\ell+1) \int_{0}^{\infty} t^{\ell} e^{-t} d t \\
& =0+(\ell+1) \ell!=(\ell+1)!
\end{aligned}
$$

(31.4) A differerence equation for $\Gamma(z)$.- One of the most important properties of $\Gamma(z)$ is its behaviour under $z \mapsto z+1$. We have the following equation:

$$
\Gamma(z+1)=z \Gamma(z)
$$

Proof. This proof is a mild generalization of the one given in the previous section. Namely, we have:

$$
\begin{gathered}
\Gamma(z+1)-z \Gamma(z)=\int_{0}^{\infty}\left(t^{z}-z t^{z-1}\right) e^{-t} d t=-\int_{0}^{\infty} \frac{d}{d t}\left(t^{z} e^{-t}\right) d t \\
=\left[-t^{z} e^{-t}\right]_{t=0}^{t=\infty}
\end{gathered}
$$

For z such that $\operatorname{Re}(z)>0, \lim _{t \rightarrow \infty} t^{z} e^{-t}=0$, and $\lim _{t \rightarrow 0^{+}} t^{z}=0$. Hence,

$$
\Gamma(z+1)-z \Gamma(z)=0
$$

This relation allows us to extend the domain of $\Gamma(z)$ to $\Omega=\mathbb{C} \backslash\{0,-1,-2, \ldots\}=\mathbb{C} \backslash \mathbb{Z}_{\leq 0}$, as follows. A repeated application of $\Gamma(z+1)=z \Gamma(z)$, gives us the following, for every $N \in \mathbb{Z}_{\geq 1}$:

$$
\Gamma(z+N)=(z+N-1)(z+N-2) \cdots z \Gamma(z)
$$

Therefore, if we want to define $\Gamma(z)$ on the half-plane $\mathbb{H}_{-N}=\{z \in \mathbb{C}: \operatorname{Re}(z)>-N\}$, then we can set:

$$
\Gamma(z)=\frac{\Gamma(z+N)}{z(z+1) \cdots(z+N-1)}=\frac{1}{z(z+1) \cdots(z+N-1)} \int_{0}^{\infty} t^{z+N-1} e^{-t} d t
$$

The last integral being defined, since $\operatorname{Re}(z+N)>0$. Note that, according to this definition, $\Gamma(z)$ in defined as a meromorphic function, with poles at $z=0,-1,-2, \ldots$, which are all of order 1 .

Example. Let us compute $\operatorname{Res}_{z=0}(\Gamma(z))$. Since $z=0$ is pole of order 1 , we have:

$$
\operatorname{Res}_{z=0}(\Gamma(z))=\lim _{z \rightarrow 0} z \Gamma(z)=\lim _{z \rightarrow 0} \Gamma(z+1)=\Gamma(1)=1
$$

where we used that $z \Gamma(z)=\Gamma(z+1)$.
For an arbitrary $n \in \mathbb{Z}_{\geq 1}$, we can compute the residue $\underset{z=-n}{\operatorname{Res}}(\Gamma(z))$ by (i) change of variables $w=z+n$ and (ii) repeated application of $\Gamma(z+1)=z \Gamma(z)$:

$$
\operatorname{Res}_{z=-n}(\Gamma(z))=\operatorname{Res}_{w=0}(\Gamma(w-n))=\operatorname{Res}_{w=0}\left(\frac{\Gamma(w)}{(w-1)(w-2) \cdots(w-n)}\right)=\frac{(-1)^{n}}{n!} .
$$

(31.5) $\Gamma\left(\frac{1}{2}\right)$.- Let us try to compute the value of $\Gamma(z)$ at $z=\frac{1}{2}$. We will see this result again in the next lecture, using another expression for the Gamma function. The answer is:

$$
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
$$

Proof. By definition, $\Gamma\left(\frac{1}{2}\right)=\int_{0}^{\infty} t^{-\frac{1}{2}} e^{-t} d t$. Consider the change of variables $t=u^{2}$, which changes this integral to:

$$
\Gamma\left(\frac{1}{2}\right)=2 \int_{0}^{\infty} e^{-u^{2}} d u=\int_{-\infty}^{\infty} e^{-u^{2}} d u
$$

This last integral is known as Gaussian integral and is computed as follows. Let $I=$ $\int_{-\infty}^{\infty} e^{-u^{2}} d u$. Then:

$$
I^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-u^{2}-v^{2}} d u d v
$$

Changing to polar coordinates: $u=r \cos (\theta)$ and $v=r \sin (\theta)$ changes the area element $d u d v$ to $r d r d \theta$ (as was done in Calculus III).

$$
I^{2}=\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta=2 \pi\left[-\frac{e^{-r^{2}}}{2}\right]_{r=0}^{r=\infty}=\pi
$$

Hence, $I=\sqrt{\pi}$ as claimed.
(31.6) Computation of a real integral using Gamma function.- Let $p, q \in \mathbb{R}_{>0}$ and consider the following definite integral

$$
B(p, q)=\int_{0}^{1} x^{p-1}(1-x)^{q-1} d x
$$

Remark. If we set $x=\cos ^{2}(\theta)$, so that $d x=-2 \sin (\theta) \cos (\theta) d \theta$, and the limits of the integral become $\int_{\frac{\pi}{2}}^{0}$, then the integral in question becomes:

$$
B(p, q)=2 \int_{0}^{\frac{\pi}{2}} \cos ^{2 p-1}(\theta) \sin ^{2 q-1}(\theta) d \theta
$$

This signifies the use of $B(p, q)$ in computing various definite integrals involving sines and cosines.

Euler computed the value of $B(p, q)$ in terms of his Gamma function as:

$$
B(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}
$$

Proof. This proof is a generalization of the computation of the Gaussian integral from the previous section. We begin by writing:

$$
\Gamma(p) \Gamma(q)=\int_{0}^{\infty} \int_{0}^{\infty} t_{1}^{p-1} e^{-t_{1}} t_{2}^{q-1} e^{-t_{2}} d t_{1} d t_{2}
$$

Change of variables: $t_{1}=u_{1}^{2}$ and $t_{2}=u_{2}^{2}$ allows us to write it as:

$$
\Gamma(p) \Gamma(q)=4 \int_{0}^{\infty} \int_{0}^{\infty} e^{-u_{1}^{2}-u_{2}^{2}} u_{1}^{2 p-1} u_{2}^{2 q-1} d u_{1} d u_{2}
$$

Set $u_{1}=r \cos (\theta)$ and $u_{2}=r \sin (\theta)$ as in the previous section. Since $\left(u_{1}, u_{2}\right)$ are in the first quadrant of \mathbb{R}^{2}, the limits of integration are: $0<r<\infty$ and $0 \leq \theta \leq \frac{\pi}{2}$. We get:

$$
\Gamma(p) \Gamma(q)=4\left(\int_{0}^{\infty} e^{-r^{2}} r^{2(p+q)-1} d r\right) \cdot\left(\int_{0}^{\frac{\pi}{2}} \cos ^{2 p-1}(\theta) \sin ^{2 q-1}(\theta) d \theta\right)
$$

The first term gives us $\frac{\Gamma(p+q)}{2}$, since upon setting $r^{2}=t$ we have:

$$
\int_{0}^{\infty} e^{-r^{2}} r^{2(p+q)-1} d r=\frac{1}{2} \int_{0}^{\infty} e^{-t} t^{p+q-1} d t=\frac{\Gamma(p+q)}{2}
$$

And the second term gives us $\frac{B(p, q)}{2}$ (see the remark above). Hence:

$$
\Gamma(p) \Gamma(q)=\Gamma(p+q) B(p, q)
$$

as claimed.

[^0]: ${ }^{1}$ This notation was introduced by Legendre in 1814.

[^1]: ${ }^{2}$ Optional.

