
COMPLEX ANALYSIS: LECTURE 31

(31.0) Gamma function.– The topic of the next two lecture notes is Euler’s Gamma
function. Denoted by Γ(z)1, this function was discovered by Euler in 1729, in an attempt to
extend the definition of factorial.

The problem of interpolating discrete set of points {(n, n!) : n ∈ Z≥0} in R2 was proposed
by Goldback in 1720. More precisely, he asked for a real–valued function of a real variable
f(x) such that f(n) = n! Gamma function was defined by Euler as a solution to this prob-
lem. I recommend the following survey article for the context and history of Gamma function:

Philip J. Davis. Leonhard Euler’s integral: a historical profile of gamma function. The
American Mathematical Monthly vol. 66 (1959), 849–869.

You can download this paper at:

https://people.math.osu.edu/gautam.42/S20/DavisGammaFunction.pdf

(31.1) What is in these notes.–

(1) A definition of Γ(z) is given in §31.2 below, using an infinite integral of the kind

studied in Lecture 30. We will see a proof of the fact that

∫ ∞
0

tz−1e−t dt defines a

holomorphic function on the right half–plane {z ∈ C : Re(z) > 0} (denoted by H
below), which we define as Γ(z). The proof of the convergence of this infinite integral
is optional.

(2) We show that Γ(n) = (n − 1)! for every n ∈ Z≥1, in §31.3. In §31.4, we prove that

Γ(z) satisfies the following difference equation: Γ(z + 1) = zΓ(z) . This allows us

to extend the domain of Γ(z), from the right half–plane H to C \ {0,−1,−2, . . .}.
Hence, Γ : C 99K C is a meromorphic function with poles of order 1 at Z≤0.

(3) In §31.5, we will use the technique for computing Gaussian integrals to determine

the value of Γ(z) at z =
1

2
: Γ

(
1

2

)
=
√
π.

(4) As an application of the Gamma function, we compute (real, definite) integrals of

the following form:

∫ 1

0

xp−1(1− x)q−1 dx in §31.6.

(31.2) Euler’s integral.– Let H = {z ∈ C : Re(z) > 0}. For t ∈ R>0, recall that we define:
tz−1 = e(z−1) ln(t). Now, consider the following infinite integral:

1This notation was introduced by Legendre in 1814.
1

https://people.math.osu.edu/gautam.42/S20/DavisGammaFunction.pdf
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Γ(z) =

∫ ∞
0

tz−1e−t dt

Theorem. This infinite integral defines Γ(z) as a holomorphic function on the domain H.

Proof. 2 This proof uses Theorem 30.4 from Lecture 30, page 5. In the notational conventions
of Lecture 30, here we have a function K(t, z) = tz−1e−t defined on (t, z) ∈ R>0 ×H.

In order to prove the theorem, we have to verify Assumptions 1-5 laid out in Lecture 30,
§30.4. Note that Assumptions 1-4 hold trivially for our K(t, z). Assumption 5 needs to be
checked, both near 0 and ∞ since K(t, z) is not defined at t = 0. Let us spell out what
exactly do we have to prove.

To prove: Given a compact subset D ⊂ H, and ε > 0, there exist R > 0 and r > 0 such
that:

(1)

∣∣∣∣∫ s

0

tz−1e−t dt

∣∣∣∣ < ε for every 0 < s < r and z ∈ D.

(2)

∣∣∣∣∫ ∞
S

tz−1e−t dt

∣∣∣∣ < ε for every S > R and z ∈ D.

Let us choose A,B ∈ R>0 such that for every z ∈ D, A < Re(z) < B. This can be done,
since D is a closed and bounded set contained in H = {z ∈ C : Re(z) > 0} (see Figure 1
below).

Figure 1. Given a compact set D in the half-plane H = {z ∈ C : Re(z) > 0},
we can find A,B ∈ R>0 such that A < Re(z) < B for every z ∈ D.

Now let us prove (1). Note that since A > 0, xA = eA ln(x) → 0 as x → 0+ (i.e, from the
right). Choose r < 1 small enough so that rA < εA (remember A and ε are fixed from the

2Optional.
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start, so we are just picking some r < Min(1, (εA)
1
A )). For 0 < t < 1, ln(t) is negative, which

implies:

|tz−1| = eRe (z−1) ln(t) ≤ e(A−1) ln(t) = tA−1 for 0 < t < 1, z ∈ D.

Clearly e−t < 1 for t > 0. Combining these observations, we have, for every 0 < s < r:

∣∣∣∣∫ s

0

tz−1e−t dt

∣∣∣∣ ≤ ∣∣∣∣∫ s

0

tA−1 dt

∣∣∣∣ =

[
tA

A

]t=s
t=0

=
sA

A
< ε.

This finishes the proof of (1).

Let us prove (2) now. Note that for t > 1, we have ln(t) > 0, which implies: |tz−1| =

tRe(z−1) ≤ tB−1, for t > 1 and z ∈ D. Using the fact that tB−1e−
t
2 → 0 as t → ∞, we can

choose t0 ∈ R>0 be such that

tB−1e−
t
2 ≤ 1 for every t ≥ t0.

Now pick R > 1 to be larger than t0, and such that e−
R
2 < ε

2
. Then, for every S > R we

have:

∣∣∣∣∫ ∞
S

tz−1e−t dt

∣∣∣∣ ≤ ∫ ∞
S

(
tB−1e−

t
2

)
e−

t
2 dt ≤

∫ ∞
S

e−
t
2 dt =

[
−2e−

t
2

]∞
t=S

= 2e−
S
2 < ε.

�

(31.3) Relation with factorial.– As mentioned in Lecture 30, §30.6, this definition gener-
alizes the factorial function n 7→ n!, which is only defined for n ∈ Z≥0 (with the convention
that 0! = 1). To see this, we have the following computation (Exercise 30.6 from Lecture 30).

Claim. For any n ∈ Z≥0,
∫ ∞
0

tne−t dt = n!. Therefore, we have:

Γ(n) = (n− 1)! for every n ∈ Z≥1
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Proof. This proof is by induction on n. For n = 0, we have:∫ ∞
0

e−t dt =
[
−e−t

]t=∞
t=0

= 1 = 0!

Assuming that the statement has been verified for all n = 0, 1, . . . `, let us prove it for `+ 1.
This step uses integration by parts, and the fact that tNe−t → 0 as t→∞, for any N ∈ Z≥0.∫ ∞

0

t`+1e−t dt =
[
−t`+1e−t

]t=∞
t=0

+ (`+ 1)

∫ ∞
0

t`e−t dt

= 0 + (`+ 1)`! = (`+ 1)!

�

(31.4) A differerence equation for Γ(z).– One of the most important properties of Γ(z)
is its behaviour under z 7→ z + 1. We have the following equation:

Γ(z + 1) = zΓ(z)

Proof. This proof is a mild generalization of the one given in the previous section. Namely,
we have:

Γ(z + 1)− zΓ(z) =

∫ ∞
0

(tz − ztz−1)e−t dt = −
∫ ∞
0

d

dt

(
tze−t

)
dt

=
[
−tze−t

]t=∞
t=0

For z such that Re(z) > 0, lim
t→∞

tze−t = 0, and lim
t→0+

tz = 0. Hence,

Γ(z + 1)− zΓ(z) = 0.

�

This relation allows us to extend the domain of Γ(z) to Ω = C\{0,−1,−2, . . .} = C\Z≤0,
as follows. A repeated application of Γ(z + 1) = zΓ(z), gives us the following, for every
N ∈ Z≥1:

Γ(z +N) = (z +N − 1)(z +N − 2) · · · zΓ(z)

Therefore, if we want to define Γ(z) on the half–plane H−N = {z ∈ C : Re(z) > −N},
then we can set:

Γ(z) =
Γ(z +N)

z(z + 1) · · · (z +N − 1)
=

1

z(z + 1) · · · (z +N − 1)

∫ ∞
0

tz+N−1e−t dt

The last integral being defined, since Re(z +N) > 0. Note that, according to this defini-
tion, Γ(z) in defined as a meromorphic function, with poles at z = 0,−1,−2, . . ., which are
all of order 1.
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Example. Let us compute Res
z=0

(Γ(z)). Since z = 0 is pole of order 1, we have:

Res
z=0

(Γ(z)) = lim
z→0

zΓ(z) = lim
z→0

Γ(z + 1) = Γ(1) = 1.

where we used that zΓ(z) = Γ(z + 1).

For an arbitrary n ∈ Z≥1, we can compute the residue Res
z=−n

(Γ(z)) by (i) change of variables

w = z + n and (ii) repeated application of Γ(z + 1) = zΓ(z):

Res
z=−n

(Γ(z)) = Res
w=0

(Γ(w − n)) = Res
w=0

(
Γ(w)

(w − 1)(w − 2) · · · (w − n)

)
=

(−1)n

n!
.

(31.5) Γ

(
1

2

)
.– Let us try to compute the value of Γ(z) at z =

1

2
. We will see this result

again in the next lecture, using another expression for the Gamma function. The answer is:

Γ

(
1

2

)
=
√
π

Proof. By definition, Γ

(
1

2

)
=

∫ ∞
0

t−
1
2 e−t dt. Consider the change of variables t = u2, which

changes this integral to:

Γ

(
1

2

)
= 2

∫ ∞
0

e−u
2

du =

∫ ∞
−∞

e−u
2

du.

This last integral is known as Gaussian integral and is computed as follows. Let I =∫ ∞
−∞

e−u
2

du. Then:

I2 =

∫ ∞
−∞

∫ ∞
−∞

e−u
2−v2 du dv.

Changing to polar coordinates: u = r cos(θ) and v = r sin(θ) changes the area element du dv
to r dr dθ (as was done in Calculus III).

I2 =

∫ 2π

0

∫ ∞
0

e−r
2

r dr dθ = 2π

[
−e
−r2

2

]r=∞
r=0

= π

Hence, I =
√
π as claimed. �

(31.6) Computation of a real integral using Gamma function.– Let p, q ∈ R>0 and
consider the following definite integral

B(p, q) =

∫ 1

0

xp−1(1− x)q−1 dx



6 LECTURE 31

Remark. If we set x = cos2(θ), so that dx = −2 sin(θ) cos(θ) dθ, and the limits of the

integral become

∫ 0

π
2

, then the integral in question becomes:

B(p, q) = 2

∫ π
2

0

cos2p−1(θ) sin2q−1(θ) dθ

This signifies the use of B(p, q) in computing various definite integrals involving sines and
cosines.

Euler computed the value of B(p, q) in terms of his Gamma function as:

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)

Proof. This proof is a generalization of the computation of the Gaussian integral from the
previous section. We begin by writing:

Γ(p)Γ(q) =

∫ ∞
0

∫ ∞
0

tp−11 e−t1tq−12 e−t2 dt1 dt2

Change of variables: t1 = u21 and t2 = u22 allows us to write it as:

Γ(p)Γ(q) = 4

∫ ∞
0

∫ ∞
0

e−u
2
1−u22u2p−11 u2q−12 du1 du2

Set u1 = r cos(θ) and u2 = r sin(θ) as in the previous section. Since (u1, u2) are in the

first quadrant of R2, the limits of integration are: 0 < r <∞ and 0 ≤ θ ≤ π

2
. We get:

Γ(p)Γ(q) = 4

(∫ ∞
0

e−r
2

r2(p+q)−1 dr

)
·

(∫ π
2

0

cos2p−1(θ) sin2q−1(θ) dθ

)

The first term gives us
Γ(p+ q)

2
, since upon setting r2 = t we have:∫ ∞

0

e−r
2

r2(p+q)−1 dr =
1

2

∫ ∞
0

e−ttp+q−1 dt =
Γ(p+ q)

2
.

And the second term gives us
B(p, q)

2
(see the remark above). Hence:

Γ(p)Γ(q) = Γ(p+ q)B(p, q)

as claimed. �


