
COMPLEX ANALYSIS: LECTURE 32

(32.0) Gamma function continued.– Recall that in Lecture 31 we defined Γ(z) via the
following infinite integral:

Γ(z) =

∫ ∞
0

tz−1e−t dt.

This infinite integral converges uniformly on the right half–plane H = {z ∈ C : Re(z) > 0}
and thus defines a holomorphic function. (Theorem 31.2).

Now we will study a different expression of the Gamma function, obtained by Weierstrass
in 1856. To keep the notation separate for now (until it is proved that what is written below
is the Gamma function - in §32.4), we will denote the function defined by Weierstrass as Γ1(z):

1

Γ1(z)
= zeγz

∞∏
n=1

{(
1 +

z

n

)
e−

z
n

}
where γ = 0.5772157 . . . is a constant (called Euler–Mascheroni constant, defined in §32.1
below).

You should compare this expression with the ones that appeared in Lecture 29, §29.3. In
§32.2 below, we will prove that this infinite product converges uniformly (over the entire
complex plane), and hence defines a holomorphic function C→ C.

Weierstrass’ expression makes it easy to connect the Gamma function with trigonometric
functions. The following identity is proved in §32.4, using the infinite product expansion of
sin(z) obtained in Lecture 29, §29.4.

Γ(z)Γ(1− z) =
π

sin(πz)

(32.1) Euler–Mascheroni constant.– The number γ is defined as follows:

γ = lim
N→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

N
− ln(N + 1)

)

To see that the limit written above exists, we can proceed as follows. Consider the integral

un =

∫ 1

0

t

n(t+ n)
dt. Its value can be computed by writing the partial fraction∫ 1

0

t

n(t+ n)
dt =

∫ 1

0

(
1

n
− 1

t+ n

)
dt =

1

n
− ln(n+ 1) + ln(n)

1
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Thus, the sum
N∑
n=1

un = 1 +
1

2
+ · · ·+ 1

N
− ln(N + 1). On the other hand, for 0 < t < 1, we

have

∣∣∣∣ t

n(t+ n)

∣∣∣∣ ≤ 1

n2
. This implies that un ≤

1

n2
.

Since
∞∑
n=1

1

n2
converges (its value is

π2

6
from Lecture 29, §29.0), by comparison test we

conclude that
∞∑
n=1

un is convergent as well.

(32.2) Weierstrass’ infinite product expression.– Consider the following product

G(z) =
∞∏
n=1

{(
1 +

z

n

)
e−

z
n

}

Theorem. This infinite product converges uniformly and thus defines a holomorphic function
G : C→ C. It has zeroes of order 1 at z = −1,−2, . . .

Proof. 1 Let D ⊂ C be a compact subset. Choose N0 large enough so that
|z|
N0

<
1

2
.

Then, for every n ≥ N0, we can estimate
∣∣∣ln(1 +

z

n

)
− z

n

∣∣∣ as follows. Here, recall that

ln(w) = ln(|w|) + i arg(w), is defined on C \ R≤0, with −π < arg(w) < π. Since
|z|
n

<
1

2
,

ln
(

1 +
z

n

)
is defined, and is given by the following Taylor series:

ln
(

1 +
z

n

)
=
z

n
− 1

2

z2

n2
+

1

3

z3

n3
− · · ·

This implies:

∣∣∣ln(1 +
z

n

)
− z

n

∣∣∣ =

∣∣∣∣−1

2

z2

n2
+

1

3

z3

n3
− · · ·

∣∣∣∣ ≤ 1

2

|z|2

n2

(
1 +
|z|
n

+
|z|2

n2
+ · · ·

)
<

1

2

4N2
0

n2

(
1 +

1

2
+

1

4
+ · · ·

)
=
N2

0

n2
.

Therefore,

∣∣∣∣∣
∞∑

n=N0+1

(
ln
(

1 +
z

n

)
− z

n

)∣∣∣∣∣ < N2
0 ·

(
∞∑

n=N0+1

1

n2

)
converges for every z ∈ D.

Hence it defines a holomorphic function. This implies the theorem, since we can write

G(z) =

(
N0∏
n=1

{(
1 +

z

n

)
e−

z
n

})
· exp

(
∞∑

n=N0+1

(
ln
(

1 +
z

n

)
− z

n

))
.

�

1Optional. This proof was promised in Lecture 29, §29.3, page 7.
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(32.3) Weierstrass’ formula for the Gamma function..– Let G : C → C be the
holomorphic function from Theorem 32.2 above, with zeroes of order 1 at z ∈ Z≤−1. Define
a function Γ1(z) by the following equation:

1

Γ1(z)
= zeγz ·G(z)

where γ is the constant from §32.1 above. Thus, Γ1(z) is a meromorphic function with poles
of order 1 at z ∈ Z≤0.

Example. Let us compute G(1) from the definition: G(z) =
∞∏
n=1

{(
1 +

z

n

)
e−

z
n

}
. Thus

G(z) is the uniform limit of {GN(z)}∞N=1, where

GN(z) =
N∏
n=1

{(
1 +

z

n

)
e−

z
n

}
=

(z + 1)(z + 2) · · · (z +N)

1 · 2 · · ·N
e−(1+ 1

2
+··· 1

N )z.

Setting z = 1, we get:

GN(1) = (N + 1)e−
∑N
n=1

1
n = e−(

∑N
n=1

1
n
−ln(N+1))

By definition of γ (see §32.1 above), we obtain G(1) = lim
N→∞

GN(1) = e−γ. Hence,

Γ1(1) = 1.

(32.4) Γ1 = Γ.– Our very first task here is to prove that Γ1(z) is given by the Eulerian

integral

∫ ∞
0

tz−1e−t dt, when Re(z) > 0. Thus on the right half–plane H = {z ∈ C : Re(z) >

0}, we have the equality of (holomorphic) functions:

Γ1(z) = Γ(z) =

∫ ∞
0

tz−1e−t dt for z ∈ H.

This proof proceeds in two steps2. We will establish that both sides of the equation are
equal to the following limit (we are going to keep z ∈ H fixed throughout):

lim
N→∞

N !

z(z + 1) · · · (z +N)
N z .

Step 1. Γ1(z) = lim
N→∞

N !

z(z + 1) · · · (z +N)
N z.

Recall that we just defined Γ1(z) = lim
N→∞

e−γz

z

1

GN(z)
, where (see Example in §32.3 above):

GN(z) =
(z + 1)(z + 2) · · · (z +N)

N !
e−z

∑N
n=1

1
n .

2Optional.
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Hence Γ1(z) = lim
N→∞

N !

z(z + 1) · · · (z +N)
exp

(
z

(
N∑
n=1

1

n

)
− zγ

)
.

Replacing

(
N∑
n=1

1

n

)
− γ by ln(N) (using the definition of γ from §32.1), we get:

Γ1(z) = lim
N→∞

N !

z(z + 1) · · · (z +N)
ez ln(N) = lim

N→∞

N !

z(z + 1) · · · (z +N)
N z ,

as claimed.

Step 2. Γ(z) = lim
N→∞

N !

z(z + 1) · · · (z +N)
N z.

This computation also goes back to Euler. The idea is to replace e−t by
(
1− t

N

)N
and

integrate by parts.

Consider the integral P (z,N) =

∫ N

0

tz−1
(

1− t

N

)N
dt. A simple change of variables

t = Nτ gives us:

P (z,N) = N z

∫ 1

0

(1− τ)Nτ z−1 dτ

Integration by parts implies:∫ 1

0

(1− τ)Nτ z−1 dτ =

[
(1− τ)N

τ z

z

]τ=1

τ=0

+
N

z

∫ 1

0

(1− τ)N−1τ z dτ

=
N

z

∫ 1

0

(1− τ)N−1τ z dτ.

Repeating this calculation N times, we conclude:

∫ 1

0

(1− τ)Nτ z−1 dτ =
N(N − 1) · · · 1

z(z + 1) · · · (z +N − 1)

∫ 1

0

τ z+N−1 dτ =
N !

z(z + 1) · · · (z +N)

Hence, P (z,N) =
N !

z(z + 1) · · · (z +N)
N z. It remains to show that Γ(z) = lim

N→∞
P (z,N).

Since Γ(z) = limN→∞
∫ N
0
tz−1e−t dt, the difference of the two terms can be written as:

Γ(z)− lim
N→∞

P (z,N) = lim
N→∞

∫ N

0

tz−1

(
e−t −

(
1− t

N

)N)
dt

We are going to need the following inequality:

Inequality. For every N ∈ Z≥1 and 0 ≤ t ≤ N , we have

0 ≤ e−t −
(

1− t

N

)N
≤ 1

N
t2e−t
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Assuming this, we can finish the proof as follows. Let x = Re(z) > 0:∣∣∣∣∣
∫ N

0

tz−1

(
e−t −

(
1− t

N

)N)
dt

∣∣∣∣∣ ≤
∫ N

0

1

N
tx+1e−t dt <

1

N

∫ ∞
0

tx+1e−t dt

=
Γ(x+ 1)

N
→ 0 as N →∞.

Hence, Γ(z) = lim
N→∞

P (z,N). This finishes the proof, modulo the inequality stated above.

Its proof is given in §32.6 below.

(32.5) Relation with trigonometric functions.– In Lecture 29, §29.4, the following
identity is proved:

sin(z)

z
=
∏
n∈Z 6=0

{(
1− z

nπ

)
e
z
nπ

}
Replace z by πz to rewrite this as:

sin(πz)

πz
=

(
∞∏
n=1

{(
1− z

n

)
e
z
n

})
·

(
∞∏
n=1

{(
1 +

z

n

)
e−

z
n

})
= G(−z)G(z), where G(z) was defined in §32.2 above.

Hence, we obtain:

sin(πz)

πz
=

1

−ze−γzΓ(−z)
· 1

zeγzΓ(z)
, since zeγzG(z) =

1

Γ(z)
.

Taking inverse on both sides, and using the fact that −zΓ(−z) = Γ(1 − z), we obtain the
following relation between the Gamma function and trigonometric functions:

Γ(z)Γ(1− z) =
π

sin(πz)

Example. Set z =
1

2
in the equation above. This gives us a different proof of Γ

(
1

2

)
=
√
π.

(32.6) Proof of the inequality from §32.4.– Recall the inequality claimed in §32.4. For
every N ∈ Z≥1 and 0 ≤ t ≤ N , we have:

0 ≤ e−t −
(

1− t

N

)N
≤ 1

N
t2e−t

In order to obtain this, let us consider 0 ≤ y ≤ 1. By comparing the Taylor series
expansions, it is easy to see that

1 + y ≤ ey ≤ 1

1− y
.

Now set y = t
N

to get: (
1 +

t

N

)N
≤ et ≤

(
1− t

N

)−N
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and taking inverses of each term (which flips the inequality):(
1− t

N

)N
≤ e−t ≤

(
1 +

t

N

)−N
Thus we obtain 0 ≤ e−t −

(
1− t

N

)N
. Moreover,

e−t −
(

1− t

N

)N
≤ e−t

(
1− et

(
1− t

N

)N)

≤ e−t

(
1−

(
1 +

t

N

)N (
1− t

N

)N) (
since et ≥

(
1 +

t

N

)N)

= e−t

(
1−

(
1− t2

N2

)N)
≤ e−t

t2

N
.

In the last step, I have used the fact that for 0 ≤ y ≤ 1, we have (1− y)n ≥ 1− ny. This is
clear when ny ≥ 1, and can be shown by induction on n, in case ny < 1:

(1− y)n+1 = (1− y)n(1− y) ≥ (1− ny)(1− y)

= 1− (n+ 1)y + ny2 ≥ 1− (n+ 1)y.


