
COMPLEX ANALYSIS: LECTURE 33

(33.0) Doubly–periodic functions.– This is the last topic of our course. We are going
to study functions which are periodic with respect to two complex numbers.

If f(z) is a holomorphic function which satisfies f(z + c) = f(z), for some complex num-
ber c ∈ C, we say that f is periodic with respect to c, or c is a period of f . For instance,
ez = ez+2πi. Therefore, ez is periodic with period 2πi. Similarly, sin(z), cos(z) are periodic
with period 2π.

From now on, we are going to fix a complex number τ in the upper half of the complex
plane. That is, Im(τ) > 0. Define:

Λτ = {m+ nτ : m,n ∈ Z} ⊂ C .

Definition. A doubly–periodic function, with respect to Λτ , is a meromorphic function
f : C 99K C such that

f(z + `) = f(z) for every ` ∈ Λτ .

In other words, f(z + 1) = f(z) and f(z + τ) = f(z). It has two independent 1 periods 1
and τ , hence the name doubly–periodic.

Remark. Doubly–periodic functions are also known as elliptic functions, because of their
significance in computing arc length of an ellipse.

Summary of results in these notes. In this set of notes, we will prove some basic prop-
erties every doubly–periodic function must have. These are necessary conditions which tell
us what cannot be expected from doubly–periodic functions. For instance,

(1) We cannot have a non–constant, holomorphic doubly–periodic function (Theorem
33.2).

(2) There is no doubly–periodic function with only one pole of order 1 within a funda-
mental parallelogram (see §33.1 for the definition of a fundamental parallelogram,
and Theorem 33.4 (1)).

Theorem 33.4 contains three properties of a doubly–periodic function, contraining the set
of zeroes and poles it can have. These conditions also turn out to be sufficient, classifying

1Independent over R, that is {1, τ} are linearly independent elements of C = R2 over R. This is because
Im(τ) 6= 0.

1



2 LECTURE 33

the whole family of doubly–periodic functions, as we will see in Lecture 34.

Caveat: These notes do not contain any example of a doubly–periodic function. We will
construct such examples with the help of a special function known as Jacobi’s theta function
in the next lecture.

(33.1) Fundamental parallelogram.–

Figure 1. Grid generated by 1 and τ . Λτ is the set of vertices {m + nτ :
m,n ∈ Z}. A fundamental parallelogram is shaded.

Given any complex number t ∈ C, we can draw a parallelogram with vertices {t, t+ 1, t+
τ, t + 1 + τ}. Any such parallelogram is called a fundamental parallelogram. See Figure 1
above.

Given two complex numbers z1, z2 ∈ C, we say:z1 ≡ z2 (modulo Λτ ) if z1 − z2 ∈ Λτ . So,
if f(z) is a doubly–periodic function with respect to Λτ , and z1 ≡ z2 (modulo Λτ ), then
f(z1) = f(z2).

Note that, if R is a fundamental parallelogram, then given any z ∈ C, we can find z∗ in
R such that z ≡ z∗ (modulo Λτ ). Hence, the behaviour of a doubly–periodic function f(z)
with respect to Λτ is completely determined by its behaviour on a fundamental parallelogram.

(33.2) Holomorphic doubly–periodic functions are constants.– Let f(z) be a doubly–
periodic function with respect to Λτ . Assume that f : C → C is holomorphic (so f has no
singularities anywhere on the complex plane).

Let R be a fundamental parallelogram (for instance, with vertices 0, 1, τ and 1 + τ , as
shown in Figure 1 above). Since R is closed and bounded, there exists a contant M ∈ R>0

such that |f(z)| ≤M for every z ∈ R.

As f(z) is doubly–periodic, we get that |f(z)| ≤ M for every z ∈ C. Hence, f(z) is
an entire holomorphic function, which is bounded. By Liouville’s theorem (see Lecture 18,
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§18.2, page 3) any bounded entire function has to be constant. Hence, we have proved:

Theorem. Any doubly–periodic holomorphic function is constant.

(33.3) Zeroes and poles within a fundamental parallelogram.– Now we know that
any non–constant doubly–periodic function f(z) must have a singularity. By our definition,
f(z) is assumed to be meromorphic, meaning all its singularities are poles (recall from Lec-
ture 26, §26.5, page 4 - meromorphic functions are not allowed to have essential singularities).

Applying the same logic to
1

f(z)
, we conclude that f(z) must have a zero.

Theorem. Let R be a fundamental parallelogram. Then f(z) has finitely many zeroes and
finitely many poles in R.

Proof. Since R is a closed and bounded set and f(z) is meromorphic, the set of its poles
within R has to be finite. This argument was given in Lecture 26, Proposition 26.5, page 5.
Let us quickly review it here.

If f(z) had infinitely many poles in R, then these poles would accumulate near a point in
R, which then would have to be an essential singularity (see Lecture 26, §26.3, page 3). It
would then be a contradiction to the hypothesis that f(z) is meromorphic.

Hence, we know that f(z) can only have finitely many poles within a fundamental par-

allelogram. Similarly, carrying out this argument for
1

f(z)
, we conclude that f(z) can only

have finitely many zeroes within a fundamental parallelogram. �

(33.4) Constraints on residues and number of zeroes and poles.– Again, let f(z)
be a doubly–periodic function with respect to Λτ . Let R be the fundamental parallelogram
with vertices 0, 1, τ, 1 + τ as in Figure 1 above. As we proved in the previous paragraph,
there are only finitely many zeroes and poles of f(z) within R. Therefore, by changing R to
Rt with vertices t, t+ 1, t+ τ and t+ 1 + τ , we can assume that none of the zeros/poles are
on the boundary of Rt (see Figure 2 below).

Let a1, a2, . . . , ak be the zeroes of f(z) within Rt, of orders of vanishing N1, N2, . . . , Nk re-
spectively. Similarly, let b1, b2, . . . , b` be the poles of f(z) within Rt, of orders M1,M2, . . . ,M`

respectively (see Figure 3 below).

Theorem.

(1)
∑̀
j=1

Res
z=bj

(f(z)) = 0. In words, the sum of residues of f(z) at poles within a funda-

mental parallelogram is zero.
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Figure 2. Fundamental parallelogram Rt has vertices t, t+ 1, t+ τ, t+ 1 + τ .
t ∈ C is chosen so that f(z) has no zeroes or poles on the boundary of Rt. C
is the counterclockwise oriented boundary of Rt consisting of 4 smooth lines
L1, . . . , L4.

(2)
k∑
i=1

Ni =
∑̀
j=1

Mj. In words, the number of zeroes (counted with multiplicity) is equal

to the number of poles (counted with multiplicity) within a fundamental parallelogram.

(3)
k∑
i=1

Niai ≡
∑̀
j=1

Mjbj (modulo Λτ). In words, the sum of zeros is equal to the sum of

poles plus an element of the form m+ nτ , where m,n ∈ Z.

Figure 3. Zeroes a1, a2, . . . , ak, and Poles b1, b2, . . . , b` of f(z) within a fun-
damental parallelogram Rt.

Proof. Let C be the counterclockwise boundary of the fundamental parallelogram Rt (see
Figure 2 above). It has four smooth pieces, all straight line segments L1, L2, L3 and L4.

Proof of (1). By Cauchy’s residue theorem (see Lecture 26, §26.4, pages 3-4), we have:∑̀
j=1

Res
z=bj

(f(z)) =
1

2πi

∫
C

f(z) dz

=
1

2πi

(∫
L1

f(z) dz +

∫
L2

f(z) dz +

∫
L3

f(z) dz +

∫
L4

f(z) dz

)
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Note that

∫
L1

f(z) dz +

∫
L3

f(z) dz = 0 by periodicity of f(z), as we demonstrate below:∫
L3

f(z) dz =

∫ t+τ

t+1+τ

f(z) dz = −
∫ t+1+τ

t+τ

f(z) dz

Set z = w + τ , to get (since f(w + τ) = f(w)):∫
L3

f(z) dz = −
∫ t+1

t

f(w + τ) dw = −
∫ t+1

t

f(w) dw = −
∫
L1

f(w) dw

Similarly,

∫
L2

f(z) dz +

∫
L4

f(z) dz = 0. Hence
∑̀
j=1

Res
z=bj

(f(z)) = 0, as claimed.

Proof of (2). The number
k∑
i=1

Ni −
∑̀
j=1

Mj is computed by a similar contour integral (see

Problem 12 of Set 7):
k∑
i=1

Ni −
∑̀
j=1

Mj =
1

2πi

∫
C

f ′(z)

f(z)
dz

=
1

2πi

(∫
L1

f ′(z)

f(z)
dz +

∫
L2

f ′(z)

f(z)
dz +

∫
L3

f ′(z)

f(z)
dz +

∫
L4

f ′(z)

f(z)
dz

)
.

By the exact same argument as in the proof of (1), we get that∫
L1

f ′(z)

f(z)
dz +

∫
L3

f ′(z)

f(z)
dz = 0 , and∫

L2

f ′(z)

f(z)
dz +

∫
L4

f ′(z)

f(z)
dz = 0 .

This proves that
k∑
i=1

Ni −
∑̀
j=1

Mj = 0.

Proof of (3). Again we realize the number
k∑
i=1

Niai −
∑̀
j=1

Mjbj as a contour integral:

k∑
i=1

Niai −
∑̀
j=1

Mjbj =
1

2πi

∫
C

zf ′(z)

f(z)
dz

(Proof of this equation is exactly the one you gave for Problem 5 of Homework 7 - it is
therefore omitted here.)

Using the same argument as given for the proof of (1) above, we have:∫
L1

zf ′(z)

f(z)
dz +

∫
L3

zf ′(z)

f(z)
dz =

∫ t+1

t

(
z
f ′(z)

f(z)
− (z + τ)

f ′(z + τ)

f(z + τ)

)
dz

= −τ
∫ t+1

t

f ′(z)

f(z)
dz (by periodicity of f(z)).
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Similarly, ∫
L2

zf ′(z)

f(z)
dz +

∫
L4

zf ′(z)

f(z)
dz =

∫ t+τ

t

f ′(z)

f(z)
dz .

Combining these, we obtain:
k∑
i=1

Niai −
∑̀
j=1

Mjbj =

(
1

2πi

∫ t+τ

t

f ′(z)

f(z)
dz

)
− τ

(
1

2πi

∫ t+1

t

f ′(z)

f(z)
dz

)
.

The proof of (3) now boils down to showing that the two integrals written in the equation
above are integers:

1

2πi

∫ t+τ

t

f ′(z)

f(z)
dz ∈ Z and

1

2πi

∫ t+1

t

f ′(z)

f(z)
dz ∈ Z .

Let us prove the first one (the proof of the second one being entirely analoguous). Consider
the change of variables w = f(z). It replaces the straight line L : t→ t+ τ to a closed path
γ starting at α = f(t) and ending at f(t+ τ) = f(t) = α. Thus,

1

2πi

∫ t+τ

t

f ′(z)

f(z)
dz =

1

2πi

∫
γ

1

w
dw

By Cauchy’s integral formula, the last integral computes the number of times γ circles around
0 in counterclockwise fashion. Hence, it is an integer. Same argument applies to prove that

1

2πi

∫ t+1

t

f ′(z)

f(z)
dz ∈ Z, and the theorem follows. �


