COMPLEX ANALYSIS: LECTURE 34

(34.0) Review.- Let $\tau \in \mathbb{C}$ be such that $\operatorname{Im}(\tau)>0$. In the last lecture, we defined a doubly-periodic function with periods 1 and τ, as follows.

A meromorphic function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that $f(z+1)=f(z)$ and $f(z+\tau)=f(z)$, is called a doubly-periodic function (with periods 1 and τ).

We introduced a notation $\Lambda_{\tau}=\mathbb{Z}+\tau \mathbb{Z} \subset \mathbb{C}$. So, elements of Λ_{τ} are complex number of the form $m+n \tau$ where $m, n \in \mathbb{Z}$. Thus, any element of Λ_{τ} is a period of $f(z)$: $f(z+m+n \tau)=f(z)$ for every $m, n \in \mathbb{Z}$.

A fundamental parallelogram is any parallelogram R_{t} with vertices $\{t, t+1, t+\tau, t+1+\tau\}$ (here $t \in \mathbb{C}$ is an arbitrary complex number). Thus, we observe that the behaviour of a doubly-periodic function $f(z), z \in \mathbb{C}$, is completely determined by $f\left(z^{*}\right)$, where z^{*} lies in R_{t}.

Being doubly-periodic is a very strong condition on a meromorphic function. We proved that any doubly-periodic function $f(z)$ must have the following properties:
(1) If $f(z)$ is holomorphic, then it is constant (see $\S 33.2$). In other words, if $f(z)$ is non-constant and doubly-periodic, then it must have some singularities, which have to be poles since $f(z)$ is assumed to be meromorphic. Similarly, it must also have zeroes - just run the same logic with $\frac{1}{f(z)}$.
(2) As is the property of meromorphic functions, they can only have finitely many poles in a closed and bounded subset of \mathbb{C}. Thus within a fundamental parallelogram R_{t}, $f(z)$ has only finitely many zeroes and poles (see $\S 33.3$). Of course, if $z=\alpha$ is a zero (or a pole) of $f(z)$, then so is any $\alpha+m+n \tau, m, n \in \mathbb{Z}$.
(3) Theorem 33.4 (1) shows that the sum of residues of $f(z)$ at poles within R_{t} has to be zero.

Let us list all the zeroes and poles of $f(z)$ within a fundamental parallelogram, according to their multiplicity (that is, if $z=\alpha$ is a zero of order 5 , it must be listed 5 times):

$$
\begin{gathered}
a_{1}, a_{2}, \ldots, a_{M}: \text { zeroes of } f(z) \text { within } R_{t} . \\
b_{1}, b_{2}, \ldots, b_{N}: \text { poles of } f(z) \text { within } R_{t} . \\
1
\end{gathered}
$$

(4) In Theorem 33.4 (2), we proved that $M=N$. That is, the number of zeroes is same as the number of poles (counted with multiplicity). Moreover, (Theorem 33.4 (3)):

$$
\sum_{i=1}^{N} a_{i}-\sum_{i=1}^{N} b_{i} \in \Lambda_{\tau}
$$

That is, sum of zeroes $=$ sum of poles + an element of the form $m+n \tau$, where $m, n \in \mathbb{Z}$.
(34.1) Jacobi's theta function. $-{ }^{1}$ Doubly-periodic functions are often expressed, and efficiently computed using theta function. Recall that $\tau \in \mathbb{C}$ is chosen such that $\operatorname{Im}(\tau)>0$.

Definition. $\theta(z)$ is the unique holomorphic function, defined on the entire complex plane $\theta: \mathbb{C} \rightarrow \mathbb{C}$, which satisfies the following three properties:
(Periodicity) $\quad \theta(z+1)=-\theta(z) \quad$ and $\quad \theta(z+\tau)=-e^{-\pi \mathbf{i} \tau} e^{-2 \pi \mathbf{i} z} \theta(z)$
(Zeroes)

$$
\theta(z)=0 \text { if, and only if } z \in \Lambda_{\tau}
$$

Moreover, the order of vanishing of $\theta(z)$ at the points $m+n \tau(m, n \in \mathbb{Z})$ is 1 .
(Normalization)

$$
\theta^{\prime}(0)=1
$$

Remarks.

(1) If the dependence on the choice of τ needs to be highlighted, we will write $\theta(z ; \tau)$ instead of just $\theta(z)$. As the notation indicates, sometimes people think of $\theta(z ; \tau)$ as a function of two complex variables: let $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ be the upper half of the complex plane. Then, $\theta: \mathbb{C} \times \mathbb{H} \rightarrow \mathbb{C}$.
(2) Note that $\theta(z)$ is not doubly-periodic. This is a good news, since otherwise it cannot possibly be holomorphic, without being a boring constant.
(3) The definition above is incomplete. Namely, we still have to prove that such a function exists! It is done in Section 34.4 below, where a formula for $\theta(z)$ is written. However, it is remarkably easy to prove that if it exists, it is unique. The proposition below highlights this very useful idea - the three properties of $\theta(z)$ listed above are enough to prove all the identities involving $\theta(z)$.

(34.2) Uniqueness of $\theta(z)$.-

Proposition. There can be at most one entire holomorphic function satisfying the three properties listed in Definition 34.1 above.

[^0]Proof. Let $f_{1}: \mathbb{C} \rightarrow \mathbb{C}$ and $f_{2}: \mathbb{C} \rightarrow \mathbb{C}$ be two holomorphic functions satisfying these properties. We want to prove that $f_{1}(z)=f_{2}(z)$ for every $z \in \mathbb{C}$.

Let $F(z)=\frac{f_{1}(z)}{f_{2}(z)}$. Then, we will first check that $F(z)$ is doubly-periodic, using the property called (Periodicity):

$$
\begin{gathered}
F(z+1)=\frac{f_{1}(z+1)}{f_{2}(z+1)}=\frac{-f_{1}(z)}{-f_{2}(z)}=F(z) . \\
F(z+\tau)=\frac{f_{1}(z+\tau)}{f_{2}(z+\tau)}=\frac{-e^{-\pi \mathbf{i} \tau} e^{-2 \pi \mathbf{i} z} f_{1}(z)}{-e^{-\pi \mathbf{i} \tau} e^{-2 \pi \mathbf{i} z} f_{2}(z)}=\frac{f_{1}(z)}{f_{2}(z)}=F(z) .
\end{gathered}
$$

Next we show that $F(z)$ has no poles. The only points where $F(z)$ could possibly have poles are the zeroes of $f_{2}(z)$, namely $z=m+n \tau$, where $m, n \in \mathbb{Z}$ (we are using the property labelled (Zeroes) here). We can easily see that these are removable singularities of $F(z)$ (using l'hôpital rule, and (Normalization)):

$$
\lim _{z \rightarrow 0} F(z)=\lim _{z \rightarrow 0} \frac{f_{1}(z)}{f_{2}(z)}=\lim _{z \rightarrow 0} \frac{f_{1}^{\prime}(z)}{f_{2}^{\prime}(z)}=\frac{f_{1}^{\prime}(0)}{f_{2}^{\prime}(0)}=1 \text { exists. }
$$

Thus, $z=0$ is not a pole of $F(z)$. By its double-periodicity, $z=m+n \tau$ is not a pole of $F(z)$ for any $m, n \in \mathbb{Z}$. Hence, $F(z)$ is holomorphic and doubly-periodic. By Theorem 33.2, $F(z)$ has to be a constant, say $F(z)=C$ for every $z \in \mathbb{C}$. This constant has already been computed above: $C=F(0)=1$. Hence $f_{1}(z)=f_{2}(z)$, as claimed.
(34.3) An infinite product.- Consider the following infinite product

$$
\theta^{+}(z)=\prod_{n=1}^{\infty}\left(1-e^{2 \pi \mathbf{i} n \tau} e^{2 \pi \mathbf{i} z}\right)
$$

Theorem. This infinite product converges uniformly on compact subsets of \mathbb{C}. Hence, θ^{+}: $\mathbb{C} \rightarrow \mathbb{C}$ is a holomorphic function. It satisfies the following properties:
(1) $\theta^{+}(z+1)=\theta^{+}(z)$, and

$$
\theta^{+}(z+\tau)=\frac{\theta^{+}(z)}{1-e^{2 \pi \mathbf{i} \tau} e^{2 \pi \mathbf{i} z}}
$$

(2) $\theta^{+}(z)=0$ if, and only if $z=m-n \tau$, where $m \in \mathbb{Z}$ and $n \in \mathbb{Z}_{\geq 1}$. All these zeroes of $\theta^{+}(z)$ are of order 1.
Proof. Let us begin by proving the convergence ${ }^{2}$. This proof is very similar to the one given in Lecture 32, $\S 32.2$. For the purposes of this proof, let us denote $p=e^{2 \pi \mathbf{i} \tau}$. Since $\operatorname{Im}(\tau)>0$, we get that $|p|=e^{-2 \pi \operatorname{Im}(\tau)}<1$.

Let $D \subset \mathbb{C}$ be a compact subset. Choose $A \in \mathbb{R}$ such that $\operatorname{Im}(z)>A$ for every $z \in D$ (see Figure 1 below).

[^1]

Figure 1. Given a compact set D, we can choose $A \in \mathbb{R}$ such that $\operatorname{Im}(z)>A$ for every $z \in D$.

Since $|p|<1$, we know that $|p|^{n} \rightarrow 0$ as $n \rightarrow \infty$. Therefore, we can pick N_{0} large enough so that

$$
\left|p^{N}\right|<\frac{1}{2} \cdot e^{2 \pi A} \text { for every } N \geq N_{0}
$$

This implies that, for every $z \in D$ and $N \geq N_{0}$, we have: $\left|p^{N} e^{2 \pi \mathbf{i} z}\right|=|p|^{N} e^{-2 \pi \operatorname{Im}(z)} \leq$ $|p|^{N} e^{-2 \pi A}<\frac{1}{2}$. Thus $\ln \left(1-p^{N} e^{2 \pi \mathbf{i} z}\right)$ can be expanded using its Taylor series, and its modulus can be bounded using the triangle inequality as follows.

$$
\begin{aligned}
& \left|\ln \left(1-p^{N} e^{2 \pi \mathbf{i} z}\right)\right|=\left|p^{N} e^{2 \pi \mathbf{i} z}+\frac{1}{2} p^{2 N} e^{4 \pi \mathbf{i} z}+\frac{1}{3} p^{3 N} e^{6 \pi \mathbf{i} z} \ldots\right| \\
& \leq|p|^{N}\left|e^{2 \pi \mathbf{i} z}\right|\left(1+\frac{1}{2}+\frac{1}{4}+\cdots\right) \leq 2 e^{-2 \pi A}|p|^{N} \\
& \Rightarrow\left|\sum_{N=N_{0}}^{\infty} \ln \left(1-p^{N} e^{2 \pi \mathbf{i} z}\right)\right| \leq 2 e^{-2 \pi A} \sum_{N=N_{0}}^{\infty}|p|^{N} \text { is finite, since }|p|<1
\end{aligned}
$$

Hence, $\sum_{N=N_{0}}^{\infty} \ln \left(1-p^{N} e^{2 \pi \mathbf{i} z}\right)$ converges uniformly in $z \in D$. This proves the theorem, since:

$$
\theta^{+}(z)=\prod_{n=1}^{N_{0}-1}\left(1-p^{n} e^{2 \pi \mathbf{i} z}\right) \cdot \exp \left(\sum_{N=N_{0}}^{\infty} \ln \left(1-p^{N} e^{2 \pi \mathbf{i} z}\right)\right) .
$$

Proof of (1). Since $\theta^{+}(z)$ only involves $e^{2 \pi \mathrm{i} z}$ which is periodic in $z \mapsto z+1$, we get that $\theta^{+}(z+1)=\theta^{+}(z)$. Moreover,

$$
\theta^{+}(z+\tau)=\prod_{n=1}^{\infty}\left(1-e^{2 \pi \mathbf{i}(n+1) \tau} e^{2 \pi \mathbf{i} z}\right)=\frac{\theta^{+}(z)}{1-e^{2 \pi \mathbf{i} \tau} e^{2 \pi \mathbf{i} z}}
$$

Proof of (2). Since $\theta^{+}(z)$ is given as a product, we have $\theta^{+}(z)=0 \Longleftrightarrow 1-e^{2 \pi \mathrm{i} n \tau} e^{2 \pi \mathrm{i} z}=0$, for some $n \geq 1$. That is:

$$
e^{2 \pi \mathbf{i}(z+n \tau)}=1 \Longleftrightarrow z+n \tau=m \text { for some } m \in \mathbb{Z}
$$

This is same as saying that $z=m-n \tau$, where $m \in \mathbb{Z}$ and $n \in \mathbb{Z}_{\geq 1}$. Since all the zeroes of $1-e^{2 \pi \mathbf{i}(z+n \tau)}$ are of order 1 , the same is true for $\theta^{+}(z)$.
(34.4) Existence of $\theta(z)$.- Let $\theta^{+}(z)$ be the holomorphic entire function from the previous paragraph. Let us define $\theta^{-}(z)=\theta^{+}(-z)$, that is, $\theta^{-}(z)=\prod_{n=1}^{\infty}\left(1-e^{2 \pi \mathbf{i} n \tau} e^{-2 \pi \mathbf{i} z}\right)$. Analoguous to the two properties of $\theta^{+}(z)$ from Theorem 34.3 above, we have:
(1) $\theta^{-}(z+1)=\theta^{-}(z)$ and

$$
\theta^{-}(z+\tau)=\left(1-e^{-2 \pi \mathbf{i} z}\right) \theta^{-}(z)
$$

(2) $\theta^{-}(z)=0$ if, and only if $z=m+n \tau$ where $m \in \mathbb{Z}$ and $n \in \mathbb{Z}_{\geq 1}$. These zeroes of $\theta^{-}(z)$ are of order 1 .

Define: $T(z)=\sin (\pi z) \theta^{+}(z) \theta^{-}(z)$ We are going to prove that $T(z)$ satisfies the first two of the three properties listed in the definition of the theta function in §34.1.

Proof of (Periodicity): Since $\theta^{ \pm}(z+1)=\theta^{ \pm}(z)$ and $\sin (\pi(z+1))=-\sin (\pi z)$, we immediately get: $T(z+1)=-T(z)$.

Writing $\sin (\pi z)=\frac{e^{\pi \mathbf{i} z}-e^{-\pi \mathbf{i} z}}{2 \mathbf{i}}$, and using the periodicities of $\theta^{ \pm}(z)$ established above, we can carry out the following computation:

$$
\frac{T(z+\tau)}{T(z)}=\frac{e^{\pi \mathbf{i}(z+\tau)}-e^{-\pi \mathbf{i}(z+\tau)}}{e^{\pi \mathbf{i} z}-e^{-\pi \mathbf{i} z}} \cdot \frac{1-e^{-2 \pi \mathbf{i} z}}{1-e^{2 \pi \mathbf{i}(z+\tau)}}=-e^{-\pi \mathbf{i} \tau} e^{-2 \pi \mathbf{i} z}
$$

Proof of (Zeroes): $T(z)=0$ if, and only if

$$
\text { Either } \sin (\pi z)=0, \text { or } \theta^{+}(z)=0, \text { or } \theta^{-}(z)=0 .
$$

That is, $z \in \mathbb{Z}$, or $z \in \mathbb{Z}-\tau \mathbb{Z}_{\geq 1}$, or $z \in \mathbb{Z}+\tau \mathbb{Z}_{\geq 1}$. Moreover, all these zeroes are of order 1 . Hence, $T(z)=0 \Longleftrightarrow z \in \mathbb{Z}+\tau \mathbb{Z}$.

It remains to normalize $T(z)$ so that the third property also holds. This simply means that we have to divide $T(z)$ by $T^{\prime}(0)$ which will give us the theta function.

$$
\begin{gathered}
T^{\prime}(z)=\pi \cos (\pi z)\left(\theta^{+}(z) \theta^{-}(z)\right)+\sin (\pi z)\left(\theta^{+}(z) \theta^{-}(z)\right)^{\prime} \\
\Rightarrow T^{\prime}(0)=\pi \theta^{+}(0) \theta^{-}(0)=\pi \prod_{n=1}^{\infty}\left(1-e^{2 \pi \mathrm{i} n \tau}\right)^{2}
\end{gathered}
$$

Hence, $\theta(z)=\frac{T(z)}{T^{\prime}(0)}$. Explicitly, we have the following product formula for $\theta(z)$:

$$
\theta(z)=\frac{\sin (\pi z)}{\pi} \cdot \frac{\theta^{+}(z) \theta^{-}(z)}{\theta^{+}(0) \theta^{-}(0)}
$$

Unraveling the definitions of $\theta^{ \pm}(z)$, the product formula of $\theta(z)$ takes the following form:

$$
\theta(z)=\frac{e^{\pi \mathbf{i} z}-e^{-\pi \mathbf{i} z}}{2 \pi \mathbf{i}} \cdot \prod_{n=1}^{\infty} \frac{\left(1-e^{2 \pi \mathbf{i} n \tau} e^{2 \pi \mathbf{i} z}\right)\left(1-e^{2 \pi \mathbf{i} n \tau} e^{-2 \pi \mathbf{i} z}\right)}{\left(1-e^{2 \pi \mathbf{i} n \tau}\right)^{2}}
$$

Corollary. Theta function is odd: $\theta(-z)=-\theta(z)$.
(34.5) Doubly-periodic functions in terms of $\theta(z)$.- We are now going to prove that any doubly-periodic function can be written in terms of Jacobi's theta function.

Theorem. Let $a_{1}, a_{2}, \ldots, a_{N} \in \mathbb{C}$ and $b_{1}, b_{2}, \ldots, b_{N} \in \mathbb{C}$ be two collections of complex numbers ${ }^{3}$ such that:

$$
a_{1}+a_{2}+\cdots+a_{N}=b_{1}+b_{2}+\cdots+b_{N}
$$

Then $f(z)=\prod_{k=1}^{N} \frac{\theta\left(z-a_{k}\right)}{\theta\left(z-b_{k}\right)}$ is a doubly-periodic function. Moreover, any doubly-periodic function can be written in this form, up to multiplication by a constant.

Proof. We begin by proving that the function $f(z)=\prod_{k=1}^{N} \frac{\theta\left(z-a_{k}\right)}{\theta\left(z-b_{k}\right)}$ is doubly-periodic. This is easily proven using the periodicity property of theta function, see $\S 34.1$ above. It is clear that $f(z+1)=f(z)$. Now, we have:

$$
\begin{aligned}
f(z+\tau) & =\prod_{k=1}^{N} \frac{\theta\left(z+\tau-a_{k}\right)}{\theta\left(z+\tau-b_{k}\right)}=\prod_{k=1}^{N}\left(\frac{-e^{-\pi \mathbf{i} \tau} e^{-2 \pi \mathbf{i}\left(z-a_{k}\right)}}{-e^{-\pi \mathbf{i} \tau} e^{-2 \pi \mathbf{i}\left(z-b_{k}\right)}} \cdot \frac{\theta\left(z-a_{k}\right)}{\theta\left(z-b_{k}\right)}\right) \\
& =e^{2 \pi \mathbf{i}\left(\sum_{k=1}^{N} a_{k}-\sum_{k=1}^{N} b_{k}\right)} \frac{\theta\left(z-a_{k}\right)}{\theta\left(z-b_{k}\right)}=\frac{\theta\left(z-a_{k}\right)}{\theta\left(z-b_{k}\right)}=f(z) .
\end{aligned}
$$

Now let $g(z)$ be an arbitrary doubly-periodic function. Let us list its zeroes and poles within a fundamental parallelogram, according to their multiplicity (see $\S 34.0$ above). Let $x_{1}, x_{2}, \ldots, x_{M}$ be the zeroes and $y_{1}, y_{2}, \ldots, y_{M}$ be the poles. By Theorem 33.4 (3):

$$
\left(x_{1}+x_{2}+\cdots+x_{M}\right)=\left(y_{1}+y_{2}+\cdots+y_{M}\right)+m+n \tau,
$$

for some $m, n \in \mathbb{Z}$. Replace y_{M} by $y_{M}+m+n \tau$ so that $\sum_{k=1}^{M} x_{k}=\sum_{k=1}^{M} y_{k}$. By the argument given above, we have that:

$$
g_{1}(z)=\prod_{k=1}^{M} \frac{\theta\left(z-x_{k}\right)}{\theta\left(z-y_{k}\right)} \text { is doubly-periodic. }
$$

Moreover $g(z) / g_{1}(z)$ does not have any poles (check this by yourself - zeroes and poles of $g(z)$ and $g_{1}(z)$ cancel each other $)$. Hence, by Theorem 33.2 , it must be a constant $C \in \mathbb{C}$.

[^2]Therefore, we have proven that an arbitrary doubly-periodic function $g(z)$ can be written as:

$$
g(z)=C \prod_{k=1}^{M} \frac{\theta\left(z-x_{k}\right)}{\theta\left(z-y_{k}\right)} .
$$

Example. A lot of examples of doubly-periodic functions can now be given. For instance, pick $a \in \mathbb{C}$ such that $2 a \notin \Lambda_{\tau}$. Then the following function is doubly-periodic:

$$
\frac{\theta(z+a) \theta(z-a)}{\theta(z)^{2}} .
$$

It has a pole of order 2 at every $z=m+n \tau(m, n \in \mathbb{Z})$. It has zeroes of order 1 at $z= \pm a+m+n \tau$.

If, contrary to our assumption, $2 a$ does belong to Λ_{τ}, then this function would have zeroes of order 2 (since in this case $a=-a+m+n \tau$). Even further, if the complex number a we picked is from Λ_{τ}, then we can use the periodicity of $\theta(z)$ to conclude that the function written above is just a constant.

[^0]: ${ }^{1}$ Carl Gustav Jacob Jacobi (1804-1851). Fundamenta Nova Theoriae Functionum Ellipticarum, 1829.

[^1]: ${ }^{2}$ Optional. Proofs of (1) and (2) are not optional, being really easy.

[^2]: ${ }^{3}$ These numbers are not assumed to be distinct - repetitions are allowed.

