
COMPLEX ANALYSIS: LECTURE 34

(34.0) Review.– Let τ ∈ C be such that Im(τ) > 0. In the last lecture, we defined a
doubly–periodic function with periods 1 and τ , as follows.

A meromorphic function f : C 99K C such that f(z + 1) = f(z) and f(z + τ) = f(z), is
called a doubly–periodic function (with periods 1 and τ).

We introduced a notation Λτ = Z + τZ ⊂ C. So, elements of Λτ are complex num-
ber of the form m + nτ where m,n ∈ Z. Thus, any element of Λτ is a period of f(z):
f(z +m+ nτ) = f(z) for every m,n ∈ Z.

A fundamental parallelogram is any parallelogram Rt with vertices {t, t+1, t+ τ, t+1+ τ}
(here t ∈ C is an arbitrary complex number). Thus, we observe that the behaviour of a
doubly–periodic function f(z), z ∈ C, is completely determined by f(z∗), where z∗ lies in
Rt.

Being doubly–periodic is a very strong condition on a meromorphic function. We proved
that any doubly–periodic function f(z) must have the following properties:

(1) If f(z) is holomorphic, then it is constant (see §33.2). In other words, if f(z) is
non–constant and doubly–periodic, then it must have some singularities, which have
to be poles since f(z) is assumed to be meromorphic. Similarly, it must also have

zeroes - just run the same logic with
1

f(z)
.

(2) As is the property of meromorphic functions, they can only have finitely many poles
in a closed and bounded subset of C. Thus within a fundamental parallelogram Rt,
f(z) has only finitely many zeroes and poles (see §33.3). Of course, if z = α is a zero
(or a pole) of f(z), then so is any α +m+ nτ , m,n ∈ Z.

(3) Theorem 33.4 (1) shows that the sum of residues of f(z) at poles within Rt has to
be zero.

Let us list all the zeroes and poles of f(z) within a fundamental parallelogram,
according to their multiplicity (that is, if z = α is a zero of order 5, it must be listed

5 times):

a1, a2, . . . , aM : zeroes of f(z) within Rt.

b1, b2, . . . , bN : poles of f(z) within Rt.
1
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(4) In Theorem 33.4 (2), we proved that M = N . That is, the number of zeroes is same
as the number of poles (counted with multiplicity). Moreover, (Theorem 33.4 (3)):

N∑
i=1

ai −
N∑
i=1

bi ∈ Λτ

That is, sum of zeroes = sum of poles + an element of the form m + nτ , where
m,n ∈ Z.

(34.1) Jacobi’s theta function.– 1 Doubly–periodic functions are often expressed, and
efficiently computed using theta function. Recall that τ ∈ C is chosen such that Im(τ) > 0.

Definition. θ(z) is the unique holomorphic function, defined on the entire complex plane
θ : C→ C, which satisfies the following three properties:

(Periodicity) θ(z + 1) = −θ(z) and θ(z + τ) = −e−πiτe−2πizθ(z)

(Zeroes) θ(z) = 0 if, and only if z ∈ Λτ

Moreover, the order of vanishing of θ(z) at the points m+ nτ (m,n ∈ Z) is 1.

(Normalization) θ′(0) = 1

Remarks.

(1) If the dependence on the choice of τ needs to be highlighted, we will write θ(z; τ)
instead of just θ(z). As the notation indicates, sometimes people think of θ(z; τ) as
a function of two complex variables: let H = {z ∈ C : Im(z) > 0} be the upper half
of the complex plane. Then, θ : C×H→ C.

(2) Note that θ(z) is not doubly–periodic. This is a good news, since otherwise it cannot
possibly be holomorphic, without being a boring constant.

(3) The definition above is incomplete. Namely, we still have to prove that such a func-
tion exists! It is done in Section 34.4 below, where a formula for θ(z) is written.
However, it is remarkably easy to prove that if it exists, it is unique. The proposition
below highlights this very useful idea - the three properties of θ(z) listed above are
enough to prove all the identities involving θ(z).

(34.2) Uniqueness of θ(z).–

Proposition. There can be at most one entire holomorphic function satisfying the three
properties listed in Definition 34.1 above.

1Carl Gustav Jacob Jacobi (1804-1851). Fundamenta Nova Theoriae Functionum Ellipticarum, 1829.
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Proof. Let f1 : C→ C and f2 : C→ C be two holomorphic functions satisfying these prop-
erties. We want to prove that f1(z) = f2(z) for every z ∈ C.

Let F (z) =
f1(z)

f2(z)
. Then, we will first check that F (z) is doubly–periodic, using the prop-

erty called (Periodicity):

F (z + 1) =
f1(z + 1)

f2(z + 1)
=
−f1(z)

−f2(z)
= F (z).

F (z + τ) =
f1(z + τ)

f2(z + τ)
=
−e−πiτe−2πizf1(z)

−e−πiτe−2πizf2(z)
=
f1(z)

f2(z)
= F (z).

Next we show that F (z) has no poles. The only points where F (z) could possibly have
poles are the zeroes of f2(z), namely z = m+nτ , where m,n ∈ Z (we are using the property
labelled (Zeroes) here). We can easily see that these are removable singularities of F (z)
(using l’hôpital rule, and (Normalization)):

lim
z→0

F (z) = lim
z→0

f1(z)

f2(z)
= lim

z→0

f ′1(z)

f ′2(z)
=
f ′1(0)

f ′2(0)
= 1 exists.

Thus, z = 0 is not a pole of F (z). By its double–periodicity, z = m + nτ is not a pole of
F (z) for any m,n ∈ Z. Hence, F (z) is holomorphic and doubly–periodic. By Theorem 33.2,
F (z) has to be a constant, say F (z) = C for every z ∈ C. This constant has already been
computed above: C = F (0) = 1. Hence f1(z) = f2(z), as claimed. �

(34.3) An infinite product.– Consider the following infinite product

θ+(z) =
∞∏
n=1

(
1− e2πinτe2πiz

)
Theorem. This infinite product converges uniformly on compact subsets of C. Hence, θ+ :
C→ C is a holomorphic function. It satisfies the following properties:

(1) θ+(z + 1) = θ+(z), and

θ+(z + τ) =
θ+(z)

1− e2πiτe2πiz
.

(2) θ+(z) = 0 if, and only if z = m− nτ , where m ∈ Z and n ∈ Z≥1. All these zeroes of
θ+(z) are of order 1.

Proof. Let us begin by proving the convergence 2. This proof is very similar to the one given
in Lecture 32, §32.2. For the purposes of this proof, let us denote p = e2πiτ . Since Im(τ) > 0,
we get that |p| = e−2π Im(τ) < 1.

Let D ⊂ C be a compact subset. Choose A ∈ R such that Im(z) > A for every z ∈ D (see
Figure 1 below).

2Optional. Proofs of (1) and (2) are not optional, being really easy.
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Figure 1. Given a compact set D, we can choose A ∈ R such that Im(z) > A
for every z ∈ D.

Since |p| < 1, we know that |p|n → 0 as n→∞. Therefore, we can pick N0 large enough
so that

|pN | < 1

2
· e2πA for every N ≥ N0.

This implies that, for every z ∈ D and N ≥ N0, we have:
∣∣pNe2πiz∣∣ = |p|Ne−2π Im(z) ≤

|p|Ne−2πA < 1

2
. Thus ln

(
1− pNe2πiz

)
can be expanded using its Taylor series, and its mod-

ulus can be bounded using the triangle inequality as follows.

∣∣ln (1− pNe2πiz)∣∣ =

∣∣∣∣pNe2πiz +
1

2
p2Ne4πiz +

1

3
p3Ne6πiz · · ·

∣∣∣∣
≤ |p|N |e2πiz|

(
1 +

1

2
+

1

4
+ · · ·

)
≤ 2e−2πA|p|N .

⇒

∣∣∣∣∣
∞∑

N=N0

ln
(
1− pNe2πiz

)∣∣∣∣∣ ≤ 2e−2πA
∞∑

N=N0

|p|N is finite, since |p| < 1.

Hence,
∞∑

N=N0

ln
(
1− pNe2πiz

)
converges uniformly in z ∈ D. This proves the theorem, since:

θ+(z) =

N0−1∏
n=1

(1− pne2πiz) · exp

(
∞∑

N=N0

ln
(
1− pNe2πiz

))
.

Proof of (1). Since θ+(z) only involves e2πiz which is periodic in z 7→ z + 1, we get that
θ+(z + 1) = θ+(z). Moreover,

θ+(z + τ) =
∞∏
n=1

(
1− e2πi(n+1)τe2πiz

)
=

θ+(z)

1− e2πiτe2πiz
.

Proof of (2). Since θ+(z) is given as a product, we have θ+(z) = 0 ⇐⇒ 1− e2πinτe2πiz = 0,
for some n ≥ 1. That is:

e2πi(z+nτ) = 1 ⇐⇒ z + nτ = m for some m ∈ Z.
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This is same as saying that z = m− nτ , where m ∈ Z and n ∈ Z≥1. Since all the zeroes of
1− e2πi(z+nτ) are of order 1, the same is true for θ+(z). �

(34.4) Existence of θ(z).– Let θ+(z) be the holomorphic entire function from the pre-

vious paragraph. Let us define θ−(z) = θ+(−z), that is, θ−(z) =
∞∏
n=1

(
1− e2πinτe−2πiz

)
.

Analoguous to the two properties of θ+(z) from Theorem 34.3 above, we have:

(1) θ−(z + 1) = θ−(z) and

θ−(z + τ) =
(
1− e−2πiz

)
θ−(z).

(2) θ−(z) = 0 if, and only if z = m + nτ where m ∈ Z and n ∈ Z≥1. These zeroes of
θ−(z) are of order 1.

Define: T (z) = sin(πz)θ+(z)θ−(z) We are going to prove that T (z) satisfies the first two

of the three properties listed in the definition of the theta function in §34.1.

Proof of (Periodicity): Since θ±(z + 1) = θ±(z) and sin(π(z + 1)) = − sin(πz), we immedi-
ately get: T (z + 1) = −T (z).

Writing sin(πz) =
eπiz − e−πiz

2i
, and using the periodicities of θ±(z) established above, we

can carry out the following computation:

T (z + τ)

T (z)
=
eπi(z+τ) − e−πi(z+τ)

eπiz − e−πiz
· 1− e−2πiz

1− e2πi(z+τ)
= −e−πiτe−2πiz.

Proof of (Zeroes): T (z) = 0 if, and only if

Either sin(πz) = 0, or θ+(z) = 0, or θ−(z) = 0.

That is, z ∈ Z, or z ∈ Z− τZ≥1, or z ∈ Z + τZ≥1. Moreover, all these zeroes are of order 1.
Hence, T (z) = 0 ⇐⇒ z ∈ Z + τZ.

It remains to normalize T (z) so that the third property also holds. This simply means
that we have to divide T (z) by T ′(0) which will give us the theta function.

T ′(z) = π cos(πz)(θ+(z)θ−(z)) + sin(πz)(θ+(z)θ−(z))′

⇒ T ′(0) = πθ+(0)θ−(0) = π

∞∏
n=1

(
1− e2πinτ

)2
.

Hence, θ(z) =
T (z)

T ′(0)
. Explicitly, we have the following product formula for θ(z):

θ(z) =
sin(πz)

π
· θ

+(z)θ−(z)

θ+(0)θ−(0)

Unraveling the definitions of θ±(z), the product formula of θ(z) takes the following form:
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θ(z) =
eπiz − e−πiz

2πi
·
∞∏
n=1

(
1− e2πinτe2πiz

) (
1− e2πinτe−2πiz

)
(1− e2πinτ )2

Corollary. Theta function is odd: θ(−z) = −θ(z) .

(34.5) Doubly–periodic functions in terms of θ(z).– We are now going to prove that
any doubly–periodic function can be written in terms of Jacobi’s theta function.

Theorem. Let a1, a2, . . . , aN ∈ C and b1, b2, . . . , bN ∈ C be two collections of complex num-
bers 3 such that:

a1 + a2 + · · ·+ aN = b1 + b2 + · · ·+ bN

Then f(z) =
N∏
k=1

θ(z − ak)
θ(z − bk)

is a doubly–periodic function. Moreover, any doubly–periodic

function can be written in this form, up to multiplication by a constant.

Proof. We begin by proving that the function f(z) =
N∏
k=1

θ(z − ak)
θ(z − bk)

is doubly–periodic. This

is easily proven using the periodicity property of theta function, see §34.1 above. It is clear
that f(z + 1) = f(z). Now, we have:

f(z + τ) =
N∏
k=1

θ(z + τ − ak)
θ(z + τ − bk)

=
N∏
k=1

(
−e−πiτe−2πi(z−ak)

−e−πiτe−2πi(z−bk)
· θ(z − ak)
θ(z − bk)

)

= e2πi(
∑N

k=1 ak−
∑N

k=1 bk) θ(z − ak)
θ(z − bk)

=
θ(z − ak)
θ(z − bk)

= f(z).

Now let g(z) be an arbitrary doubly–periodic function. Let us list its zeroes and poles
within a fundamental parallelogram, according to their multiplicity (see §34.0 above). Let
x1, x2, . . . , xM be the zeroes and y1, y2, . . . , yM be the poles. By Theorem 33.4 (3):

(x1 + x2 + · · ·+ xM) = (y1 + y2 + · · ·+ yM) +m+ nτ ,

for some m,n ∈ Z. Replace yM by yM + m + nτ so that
M∑
k=1

xk =
M∑
k=1

yk. By the argument

given above, we have that:

g1(z) =
M∏
k=1

θ(z − xk)
θ(z − yk)

is doubly–periodic.

Moreover g(z)/g1(z) does not have any poles (check this by yourself - zeroes and poles of
g(z) and g1(z) cancel each other). Hence, by Theorem 33.2, it must be a constant C ∈ C.

3These numbers are not assumed to be distinct - repetitions are allowed.
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Therefore, we have proven that an arbitrary doubly–periodic function g(z) can be written
as:

g(z) = C
M∏
k=1

θ(z − xk)
θ(z − yk)

.

�

Example. A lot of examples of doubly–periodic functions can now be given. For instance,
pick a ∈ C such that 2a 6∈ Λτ . Then the following function is doubly–periodic:

θ(z + a)θ(z − a)

θ(z)2
.

It has a pole of order 2 at every z = m + nτ (m,n ∈ Z). It has zeroes of order 1 at
z = ±a+m+ nτ .

If, contrary to our assumption, 2a does belong to Λτ , then this function would have zeroes
of order 2 (since in this case a = −a + m + nτ). Even further, if the complex number a
we picked is from Λτ , then we can use the periodicity of θ(z) to conclude that the function
written above is just a constant.


