
COMPLEX ANALYSIS: LECTURE 35

(35.0) Review.– Let τ ∈ C be such that Im(τ) > 0. We defined Jacobi’s theta function,
denoted by θ(z) (or, by θ(z; τ) if dependence on τ needs to be highlighted) in Lecture 34,
§34.1, as follows.

θ(z) is the unique holomorphic function, defined on the entire complex plane θ : C → C,
which satisfies the following three properties:

(Periodicity) θ(z + 1) = −θ(z) and θ(z + τ) = −e−πiτe−2πizθ(z)

(Zeroes) θ(z) = 0 if, and only if z ∈ Λτ

Moreover, the order of vanishing of θ(z) at the points m+ nτ (m,n ∈ Z) is 1.

(Normalization) θ′(0) = 1

(1) An infinite product expression for θ(z) was given in Lecture 34, §34.4. From this we
concluded that θ(−z) = −θ(z).

(2) We proved in Lecture 34, §34.2 that the three properties listed above uniquely deter-
mine θ(z).

(3) Finally, we showed that any doubly–periodic function can be written in terms of
theta function. More precisely, if f(z) is a doubly–periodic function, then we can
find a1, a2, . . . , aN ∈ C and b1, b2, . . . , bN ∈ C two collections of complex numbers
satisfying

a1 + a2 + · · ·+ aN = b1 + b2 + · · ·+ bN ,

such that f(z) = C
N∏
k=1

θ(z − ak)
θ(z − bk)

, where C ∈ C is a constant.

A word on the method of proofs. In Lecture 34, Proposition 34.2 and Theorem 34.5
are proved using a very simple and elegant argument, which I would like to emphasize here.
Assume that we want to prove an identity of the form f1(z) = f2(z). We can do this in the
following three steps:

• Prove that F (z) =
f1(z)

f2(z)
is doubly–periodic.

• Prove that F (z) is holomorphic, by showing that zeroes and poles of f1 and f2 cancel
each other. At this point we invoke Theorem 33.2 to conclude that F (z) = C is a
constant.
• Finally determine C by evaluating F (z) at a convenient point z = z0.
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2 LECTURE 35

(35.1) What is and isn’t in these notes.– We will illustrate the method sketched above,
by proving a non–trivial identity (often called Fay’s trisecant identity 1 ) involving theta
function in §35.2 below. In general, it is the method that is important, and any such iden-
tity can be easily proved using it. But I will still write a nice way to memorize Fay’s identity,
in §35.3. It has been conjectured that any relation involving theta function can be deduced
from Fay’s trisecant identity 2 but as far as I know, there is no proof of this.

In §35.4, I will illustrate a systemetic way of obtaining a formula of an infinite sum which
satisfies the exact same periodicity property as θ(z). The resulting infinite sum is shown to
be uniformly convergent in §35.5. Therefore, it defines an entire holomorphic function, de-
noted by θ1(z). In Theorem 35.5, we will show that θ1(z) has zeroes of order 1 at z = m+nτ
where m,n ∈ Z. Hence, θ1(z) and θ(z) must be related by a constant3.

The computation of this constant is not in these notes, though its value is given in §35.6.
It relies on a rather non–trivial identity called Jacobi’s triple product identity (because it
features three infinite products):

(
∞∏
n=1

(
1− e2πinτ

))
·

(
∞∏
n=1

(
1− e2πinτe2πiz

))
·

(
∞∏
n=1

(
1− e2πinτe−2πiz

))

=
∞∑
k=0

(−1)keπiτk(k+1) sin((2k + 1)πz)

sin(πz)

This identity appeared in Jacobi’s Fundamenta Nova Theoriae Functionum Ellipticarum
(1829), and is one of the most beautiful formulae in the theory of doubly–periodic functions.
It gives rise to several interesting combinatorial results. For instance, by letting z → 0, and
writing q = eπiτ , we get:

∞∑
k=0

(−1)k(2k + 1)qk(k+1) =
∞∏
n=1

(1− q2n)3

In turn, such combinatorial formulae go back to Euler (1775). I encourage you to read
more about these, for instance search for Euler’s pentagonal number theorem.

On the proofs of Jacobi’s triple product identity. I know two ways to prove this, none
are elementary. One of these proofs will be written up as Optional Reading B, and is the
same as Jacobi’s original proof. It involves rather lengthy, but still elementary, computations
with the heat equation (a differential equation satisfied by theta function).

I.G. Macdonald obtained a generalization of this identity, now known as Macdonald iden-
tities, in Affine root systems and Dedekind’s η function (Invent. Math. 1972). It was later
realized by V.G. Kac (1974) and R.V. Moody (1975) that all of these identities can be ob-
tained from the Weyl–Kac character formula. This is the second proof I know, but I will

1J. Fay: Theta functions on Riemann surfaces (1973).
2D. Mumford: Tata lectures on theta II (1984).
3Historically, it is θ1(z) that appeared first in the works of Jacobi.
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leave it for you to learn it in a course on representation theory.

(35.2) Fay’s trisecant identity.– This identity is a relation between values of theta func-
tion at sums and differences of 4 complex numbers. It only looks scary, but is very easy to
remember (see §35.3 below) and prove.

Theorem. Let α, β, γ, δ be four complex numbers. Then:

θ(α− γ)θ(α + γ)θ(β − δ)θ(β + δ) = θ(α− β)θ(α + β)θ(γ − δ)θ(γ + δ)

+ θ(α− δ)θ(α + δ)θ(β − γ)θ(β + γ)

Proof. Let us keep β, γ, δ ∈ C fixed and view both sides as functions of z = α. Let us
consider the following function:

F (z) =
θ(z − β)θ(z + β)θ(γ − δ)θ(γ + δ) + θ(z − δ)θ(z + δ)θ(β − γ)θ(β + γ)

θ(z − γ)θ(z + γ)

We want to show that F (z) is a constant, given by θ(β − δ)θ(β + δ). To do this, we proceed
with the method outlined in §35.0 above.

Step 1. Prove that F (z) is doubly–periodic.

It is easy to check that F (z+ 1) = F (z). Now, using θ(x+ τ) = −e−πiτe−2πixθ(x), we get:

θ(z + τ − γ)θ(z + τ + γ) = e−2πiτe−4πizθ(z − γ)θ(z + γ).

(same with γ changed to β or δ).

Thus, upon replacing z by z + τ , both the numerator and the denominator of F (z) get
rescaled by e−2πiτe−4πiz. Hence we get F (z + τ) = F (z).

Step 2. Prove that F (z) is holomorphic.

The apparent poles of F (z) are at the zeroes of θ(z−γ)θ(z+γ). That is, at z = ±γ+m+nτ ,
where m,n ∈ Z. By periodicity of F (z) already established, it is enough to show that z = ±γ
are removable poles of F (z). Since the order of vanishing of θ(z − γ) at z = γ is 1, we only
have to check that the numerator of F (z) also vanishes at z = γ (same argument applies
to z = −γ as well). Let us set z = γ in the numerator of F (z), and use the fact that
θ(−x) = −θ(x):

θ(γ − β)θ(γ + β)θ(γ − δ)θ(γ + δ) + θ(γ − δ)θ(γ + δ)θ(β − γ)θ(β + γ)

= θ(γ − δ)θ(γ + δ)θ(β + γ) (θ(−(β − γ)) + θ(β − γ))

= 0.

So, F (z) is holomorphic and doubly–periodic, hence it must be a constant F (z) = C. The
last step is to figure out the constant, which we can by specializing z to a convenient value.
For instance, let us set z = β:

C = F (β) = θ(β − δ)θ(β + δ).

The theorem is proved. �
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(35.3) How to memorize Fay’s identity.– In year 130, Greek mathematician Ptolemy
proved the following result (called Ptolemy relation). Let ABCD be a quadrilateral inscribed
in a circle (see Figure 1 below). Denoting by |PQ| the length of the line segment joining two
points P and Q, the following relation must hold.

(Ptolemy relation) |AC| · |BD| = |AB| · |CD|+ |AD| · |BC|

Figure 1. A quadrilateral ABCD inscribed in a circle.

There are several ways to prove this relation (using similar triangles, trigonometric iden-
tities etc). I will omit a proof of this, since this section is more of a memorization trick.

To get Fay’s trisecant identity, simply replace

|AC| 7→ θ(α− γ)θ(α + γ), |BD| 7→ θ(β − δ)θ(β + δ)

and similarly for other sides. Upon this replacement, Ptolemy relation becomes Fay’s trise-
cant identity.

(35.4) Theta function as a Fourier series.– Let us consider the problem of finding a
function, say θ1(z), which has the same periodicity property as θ(z):

θ1(z + 1) = −θ1(z) and θ1(z + τ) = −e−πiτe−2πizθ1(z).

From the first equation, we can guess that the function we are looking for can be written as
an infinite series in eπi(2`+1)z, where ` ∈ Z. This is because eπi(2`+1) = −1 for every ` ∈ Z.
So we postulate:

θ1(z) =
∑
`∈Z

c`e
πi(2`+1)z .

In order to figure out the coefficients (c`, ` ∈ Z), we use the second periodicity requirement.

θ1(z + τ) =
∑
`∈Z

c`e
πi(2`+1)τeπi(2`+1)z

−e−πiτe−2πizθ1(z) =
∑
`∈Z

(−c`e−πiτ )eπi(2`−1)z =
∑
n∈Z

(−cn+1e
−πiτ )eπi(2n+1)z



LECTURE 35 5

where, in the last step, I substituted ` = n+ 1. Now comparing the coefficients of e2πi(2`+1)z,
we obtain:

−c`+1e
−πiτ = c`e

πi(2`+1)τ ⇒ c`+1 = −c`eπi(2`+2)τ

Let us agree to normalize c0 = 1, so that the above relation can be solved as:

c` = (−1)`eπiτ`(`+1).

This computation motivates us to define a function:

θ1(z) =
∑
`∈Z

(−1)`eπiτ`(`+1)eπi(2`+1)z

(35.5) Convergence and zeroes of θ1(z).– As always, our first task is going to be to
prove that the infinite sum written above converges uniformly on compact subsets of C,
hence defines θ1(z) as a holomorphic function θ1 : C → C. We will also have to know the
zeroes of θ1(z).

In order to do this, it is convenient to group certain terms of θ1(z) together. Note that the
coefficient eπiτ`(`+1) gives the same value for ` = k and ` = −k−1, where k ∈ Z≥0. This allows
us to write θ1(z) as an infinite sum over k ∈ Z≥0, combining terms (0,−1), (1,−2), and so on.

θ1(z) =
∞∑
k=0

(−1)keπiτk(k+1)
(
eπi(2k+1)z − e−πi(2k+1)z

)
Theorem. The infinite sum given above converges uniformly on compact subsets of C. Thus,
θ1(z) is an entire holomorphic function with the following periodicity properties:

θ1(z + 1) = −θ1(z) and θ1(z + τ) = −e−πiτe−2πizθ1(z).

Moreover, θ1(z) = 0 if, and only if z = m + nτ , where m,n ∈ Z. Each of these zeroes is of
order 1.

Proof. We begin by proving the uniform convergence 4. Let D ⊂ C be a compact subset.
Choose A ∈ R>0 so that −A < Im(z) < A for every z ∈ D. Let us write q = eπiτ . Note that
|q| = e−π Im(τ) < 1 since Im(τ) > 0.

So, for every z ∈ D, and k ∈ Z≥0, we have:∣∣eπi(2k+1)z
∣∣ = e−π(2k+1) Im(z) <

(
eπA
)2k+1

and similarly
∣∣e−πi(2k+1)z

∣∣ < (eπA)2k+1
. Therefore we obtain:∣∣eπi(2k+1)z − e−πi(2k+1)z

∣∣ < 2
(
eπA
)2k+1

.

4This part of the proof is optional.
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Now, the ratio test implies that the following series, which dominates the series defining
θ1(z), converges:

2
∞∑
k=0

|q|k(k+1)
(
eπA
)2k+1

Ratio of successive terms is |q|2(k+1)e2πA → 0 as k →∞, since |q| < 1.

Hence, the infinite series defining θ1(z) converges uniformly in z ∈ D, as we wanted.

The periodicity properties of θ1(z) have already been verified in §35.4 above. It is also
easy to see that θ1(0) = 0 from the formula written above. By periodicity, we conclude that
θ1(m+ nτ) = 0 for every m,n ∈ Z. Thus, it remains to show that these are the only zeroes
of θ1, and the order of vanishing of θ1(z) at z = 0 is 1.

Let us compute the number of zeroes of θ1(z) within a fundamental parallelogram Rt with
vertices t, t+ 1, t+ τ, t+ 1 + τ (see Figure 2 below).

Figure 2. Contour C is the counterclockwise boundary of the parallelogram Rt.

As we know by now (Problem 5 of Homework 7), if N is the number of zeroes of θ1(z)

within C, then: N =
1

2πi

∫
C

θ′1(z)

θ1(z)
dz. This integral computes number of zeroes - number of

poles, but we already know θ1(z) is holomorphic on C, so it does not have any poles.

N =
1

2πi

(∫
L1

θ′1(z)

θ1(z)
dz +

∫
L2

θ′1(z)

θ1(z)
dz +

∫
L3

θ′1(z)

θ1(z)
dz +

∫
L4

θ′1(z)

θ1(z)
dz

)
Using the periodicity properties of θ1(z), we can compute:

θ′1(z + 1)

θ1(z + 1)
=
θ′1(z)

θ1(z)
and

θ′1(z + τ)

θ1(z + τ)
= −2πi +

θ′1(z)

θ1(z)

Hence the integral over L2 cancels with the integral over L4. Moreover,∫
L3

θ′1(z)

θ1(z)
dz = −

∫ t+1+τ

t+τ

θ′1(z)

θ1(z)
dz = −

∫ t+1

t

θ′1(z + τ)

θ1(z + τ)
dz
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= −
∫ t+1

t

(
−2πi +

θ′1(z)

θ1(z)

)
dz = −

∫
L1

θ′1(z)

θ1(z)
dz + 2πi.

This implies that
1

2πi

∫
C

θ′1(z)

θ1(z)
dz = 1.

Since we already know θ1(0) = 0, and there is only one zero of θ1(z) within C, it must be at
z = 0, with order of vanishing 1, and nowhere else. The theorem is proved. �

(35.6) θ1(z) vs θ(z).– In the previous two paragraphs, we proved that

θ1(z) =
∞∑
k=0

(−1)keπiτk(k+1)
(
eπi(2k+1)z − e−πi(2k+1)z

)
satisfies two of the three defining properties of

θ(z) =
eπiz − e−πiz

2πi
·
∞∏
n=1

(
1− e2πinτe2πiz

) (
1− e2πinτe−2πiz

)
(1− e2πinτ )2

.

Hence, on general grounds (see Proposition 34.2 of Lecture 34) they must be related by a
constant, say C (which depends on τ , but is independent of z): θ1(z) = Cθ(z). Jacobi’s
triple product identity 5 computes this constant as:

C = 2πi
∞∏
n=1

(
1− e2πinτ

)3
Combining all of this, and writing

eπi(2k+1)z − e−πi(2k+1)z

eπiz − e−πiz
as

sin((2k + 1)πz)

sin(πz)
we get the

following equation, which was written in §35.1 above.(
∞∏
n=1

(
1− e2πinτ

))
·

(
∞∏
n=1

(
1− e2πinτe2πiz

))
·

(
∞∏
n=1

(
1− e2πinτe−2πiz

))

=
∞∑
k=0

(−1)keπiτk(k+1) sin((2k + 1)πz)

sin(πz)

5a proof of this identity is given in Optional Reading B.


