ALGEBRA 2. PROBLEM SET 1

Unless otherwise stated, the functors below are covariant.

References are made here to the lecture notes. For example, §2.5 refers to Lecture 2, paragraph 5^{th} (also labelled as (2.5) in Lecture 2).

Problem 1. Let $F : \mathcal{C} \to \mathcal{D}$ be a functor from a category \mathcal{C} to another category \mathcal{D} . Assume that F is faithful. For a morphism $f \in \text{Hom}_{\mathcal{C}}(A, B)$, prove that if F(f) is injective (resp. surjective) then so is f.

Problem 2. Let $F : \mathcal{C} \to \mathcal{D}$ be a functor. Let f be a morphism in \mathcal{C} . Assume that f has a left (resp. right) inverse. Prove that the same is true for F(f). Is the similar assertion true, where instead we have f injective (resp. surjective)?

Problem 3. Give an example for each of the following:

- (1) A functor which is faithful and dense but not full.
- (2) A functor which is full and dense, but not faithful.
- (3) A functor which is faithful and full, but not dense.

Problem 4. Consider the following category, denoted in §0.7 by $\mathcal{F}(\mathbf{Ab})$. Its objects are filetered abelian groups: $G_{\bullet} = G_0 \supseteq G_1 \supseteq \ldots$ where G_j is an abelian group and G_{j+1} is a subgroup of G_j (for every $j \ge 0$). Morphisms are defined by:

 $\operatorname{Hom}(G_{\bullet}, H_{\bullet}) = \{f: G_0 \to H_0 \text{ group homomorphism such that } f(G_j) \subset H_j, \forall j \ge 0\}$

Give an example of a morphism in $\mathcal{F}(\mathbf{Ab})$ which is a bijection but not an isomorphism.

Problem 5. Let M be a monoid and let \underline{M} denote the category which has only one object, say p, and $\operatorname{End}_{\underline{M}}(p) = M$. Prove that functors between two such categories \underline{M} and \underline{N} are same as homomorphisms of monoids $F : M \to N$. Verify that natural transformations between two functor F, G correspond to elements $b \in N$ such that b.F(x) = G(x).b for every $x \in M$.

Problem 6. Let G be a group and let G-Sets be the category whose objects are sets together with a G-action, and morphisms are set maps which commute with the G-action (see §2.7). Prove that natural isomorphisms of the forgetful functor F : G-Sets \rightarrow Sets are given by elements of the group G. That is, $\operatorname{Aut}(F) = G$.

Problem 7. Let \mathcal{C} be a category. Recall from §0.10 that for an object $X \in \mathcal{C}$, we have two (covariant and contravariant respectively) functors $h_X, h^X : \mathcal{C} \to \mathbf{Sets}$. Given a morphism $f : X \to Y$ in \mathcal{C} , prove that $h_f : h_Y \Rightarrow h_X$ and $h^f : h^X \Rightarrow h^Y$, defined in §1.5, are natural transformations.

Problem 8. Let G be a group and H < G a subgroup. Verify that $\operatorname{Ind}_{H}^{G} : H$ -Sets $\rightarrow G$ -Sets defined in §2.7 is a functor. Prove that $(\operatorname{Ind}_{H}^{G}, \operatorname{Res}_{H}^{G})$ is an adjoint pair (see §2.7 for the definition of these functors).

Problem 9. Recall the definition of the category Mat_K from §1.7, where K is a fixed field. Recall that we have a functor $F : \operatorname{Mat}_K \to \operatorname{Vect}_K^{\operatorname{fd}}$.

- (1) Prove that F is an equivalence of categories.
- (2) Prove that constructing a functor $G : \operatorname{Vect}_{K}^{\operatorname{fd}} \to \operatorname{Mat}_{K}$ together with natural isomorphisms

$$\phi: \mathrm{Id}_{\mathbf{Mat}_K} \Rightarrow G \circ F \qquad \text{and} \qquad \psi: \mathrm{Id}_{\mathbf{Vect}_K^{\mathrm{fd}}} \Rightarrow F \circ G,$$

is same as making a choice of a basis $B_G(V)$ for every $V \in \mathbf{Vect}_K^{\mathrm{fd}}$.

(3) Let G_1, G_2 be two such functors, obtained by choosing $B_1(V), B_2(V)$ respectively, two bases of V, for every finite-dimensional vector space V. Prove that the change of basis matrix provides a natural isomorphism between G_1 and G_2 .

Problem 10. Let *R* be a unital ring, and let *R*-mod be the category of left *R*-modules. Consider the forgetful functor $F : R \text{-mod} \rightarrow \mathbf{Ab}$. What are the natural transformations $F \Rightarrow F$?

Problem 11. Let **Gps** be the category of groups and **Ab** the category of abelian groups. Consider the functor of natural inclusion $I : \mathbf{Ab} \to \mathbf{Gps}$. Let $A : \mathbf{Gps} \to \mathbf{Ab}$ be given, on objects by:

$$A: G \mapsto G/[G, G],$$

where [G, G] is the subgroup of G generated by commutators $\{aba^{-1}b^{-1} : a, b \in G\}$ (recall that it is automatically normal). Prove that (A, I) is an adjoint pair.

Problem 12. Recall the definition of a pair of adjoint functors from §2.4. Let $F_1 : \mathcal{C} \to \mathcal{D}$ and $F_2 : \mathcal{D} \to \mathcal{C}$ be functors such that (F_1, F_2) is an adjoint pair.

- (1) Prove that there is a natural transformation $\eta : \mathrm{Id}_{\mathcal{C}} \Rightarrow F_2 \circ F_1$ (it is called *the unit of adjunction*.)
- (2) Prove that there is a natural transformation $\varepsilon : F_1 \circ F_2 \Rightarrow \mathrm{Id}_{\mathcal{D}}$ (it is called the counit of adjunction.)