ALGEBRA 2. PROBLEM SET 2

If nothing is specified for a functor, it is assumed to be covariant.
Problem 1. Write the unit and counit of the following pairs of adjoint functors.
(1) Let G be a group and consider Sets $\underset{F}{\stackrel{I}{\rightleftarrows}} G$-Sets. Here, I sends a set X to $G \times X$, with G-action via left multiplication on the first component. F is the forgetful functor.
(2) Sets $\underset{F_{2}}{\stackrel{F_{1}}{\rightleftarrows}}$ Gps. Here F_{1} sends a set X to the free group generated by X, and F_{2} is the forgetful functor.

Problem 2. Assume that a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is an equivalence of categories (i.e, it is faithful, full and essentially surjective). Prove that F admits both a left, and a right adjoint.

Problem 3. Fix two sets $X, Y \in$ Sets and define a functor F : Sets \rightarrow Sets as follows: $F(Z)=\operatorname{Hom}_{\text {Sets }}(X, Z) \times \operatorname{Hom}_{\text {Sets }}(Y, Z)$ for every $Z \in$ Sets. For every morphism $f: Z \rightarrow Z^{\prime}$ in Sets, $F(f)$ is componentwise composition with f. That is, $F(f):\left(g_{1}, g_{2}\right) \mapsto\left(f \circ g_{1}, f \circ g_{2}\right)$. Is this functor representable?

Problem 4. With the notations of problem 2 above, let G be the contravariant analogue of F. That is, $G(Z)=\operatorname{Hom}_{\text {Sets }}(Z, X) \times \operatorname{Hom}_{\text {Sets }}(Z, Y)$. Determine whether G is representable.

Problem 5. For a set X, let $\mathfrak{P}(X)$ be the set of all subsets of X. Consider the covariant functor $X \mapsto \mathfrak{P}(X)$ which sends $f: X \rightarrow Y$ to $\widetilde{f}: \mathfrak{P}(X) \rightarrow \mathfrak{P}(Y)$ given by: $\widetilde{f}\left(X^{\prime}\right)=f\left(X^{\prime}\right) \subset Y$, for every $X^{\prime} \subset X$. Prove that this functor is not representable.

Problem 6. Consider the functors given in the figure below. Assume that $\left(F_{1}, F_{2}\right)$ and $\left(F_{1}, \widetilde{F_{2}}\right)$ are both adjoint pairs. Prove that there is a natural isomorphism (of functors) between F_{2} and $\widetilde{F_{2}}$.

Problem 7. Let \mathcal{C} and \mathcal{D} be two categories, and $F: \mathcal{C} \rightarrow \mathcal{D}$ be a functor. Prove that F admits a right adjoint if, and only if, the following (contravariant) functor is representable, for every $Y \in \mathcal{D}$:

$$
I_{Y}: \mathcal{C} \rightarrow \text { Sets, } \quad X \mapsto \operatorname{Hom}_{\mathcal{D}}(F(X), Y)
$$

(You do not have to prove that I_{Y} is a functor, since it is a composition $I_{Y}=\operatorname{Hom}_{\mathcal{D}}(-, Y) \circ F$ of functors.)

Problem 8. Let F be a functor $\mathcal{C} \rightarrow$ Sets. Prove that F is represented by $\left(X, \iota_{X}\right)$ if, and only if there exists a distinguished element $p_{X} \in F(X)$ such that the following "universal property" holds.
For every $Y \in \mathcal{C}$ and $b \in F(Y)$, there is a unique morphism $f: X \rightarrow Y$ such that $F(f)\left(p_{X}\right)=b$.

Problem 9. Let K be a field, and let us fix two K-vector spaces V_{1} and V_{2}. Consider the following functor:

$$
T_{V_{1}, V_{2}}: \operatorname{Vect}_{K} \rightarrow \operatorname{Vect}_{K}
$$

which sends W to the space of all K-bilinear maps $V_{1} \times V_{2} \rightarrow W$. State the universal property for a vector space V, so that it represents $T_{V_{1}, V_{2}}$. Give a construction of such a V.

Problem 10. Fix two groups G_{1} and G_{2} and consider the following functor

$$
I: \mathbf{G p s} \rightarrow \text { Sets, } \quad H \mapsto \operatorname{Hom}_{\mathbf{G p s}}\left(G_{1}, H\right) \times \operatorname{Hom}_{\mathbf{G p s}}\left(G_{2}, H\right)
$$

Determine whether this functor is representable.

