ALGEBRA 2. HOMEWORK 4

Problem 1. Let \mathcal{A} be an abelian category.
(1) Show that a sequence of morphisms $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C$ is exact if, and only if for every $X \in \mathcal{A}$, the following is an exact sequence in $\mathbf{A b}$:

$$
0 \rightarrow \operatorname{Hom}_{\mathcal{A}}(X, A) \xrightarrow{f \circ-} \operatorname{Hom}_{\mathcal{A}}(X, B) \xrightarrow{g \circ-} \operatorname{Hom}_{\mathcal{A}}(X, C) .
$$

(2) Show that a sequence of morphisms $A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is exact if, and only if for every $X \in \mathcal{A}$, the following is an exact sequence in $\mathbf{A b}$:

$$
0 \rightarrow \operatorname{Hom}_{\mathcal{A}}(C, X) \xrightarrow{-\circ g} \operatorname{Hom}_{\mathcal{A}}(B, X) \xrightarrow{-\circ f} \operatorname{Hom}_{\mathcal{A}}(A, X) .
$$

Problem 2. Let \mathcal{A} and \mathcal{B} be two abelian categories. Consider a pair of additive covariant functors $\mathcal{A} \underset{G}{\stackrel{F}{\rightleftarrows}} \mathcal{B}$. Assume that (F, G) is an adjoint pair. Prove that F is right exact, and G is left exact.

Problem 3. Assume that \mathcal{C} is an additive category in which arbitrary direct sums and products exist. Further assume that direct sums and products are isomorphic. Prove that \mathcal{C} is trivial (that is, every object of \mathcal{C} is isomorphic to the trivial one).

In problems 4-6 below, $\mathcal{A}=R$-mod is the category of left R-modules for a unital ring R.
Problem 4. Let J be a set. Prove that $\bigoplus_{J}, \prod_{J}: \mathcal{A}^{J} \rightarrow \mathcal{A}$ are exact functors.
Problem 5. Let (I, \leq) be a right directed partially ordered set. Prove that the direct limit $\lim _{(\bar{I}, \leq)}: \mathcal{F}(\mathbf{I}, \mathcal{A}) \rightarrow \mathcal{A}$ is an exact functor. Recall that \mathbf{I} is the category associated to the partially ordered set (I, \leq) and $\mathcal{F}(\mathbf{I}, \mathcal{A})$ is the category of direct systems valued in \mathcal{A}.

Problem 6. Let (I, \leq) be a partially ordered set. Prove that the inverse limit $\lim _{(I, \leq)}$: $\mathcal{F}\left(\mathbf{I}^{\text {op }}, \mathcal{A}\right) \rightarrow \mathcal{A}$ is left exact, but not right exact.

In problems $7-10, \mathcal{A}=A-\bmod$ for a unital commutative ring A.
Problem 7. Let I be a set, $\left\{M_{i}\right\}_{i \in I}$ a set of A-modules. For $N \in A$-mod, show that we have an isomorphism:

$$
\left(\bigoplus_{i \in I} M_{i}\right) \otimes N \cong \bigoplus_{i \in I}\left(M_{i} \otimes N\right)
$$

Problem 8. Prove or give a counterexample to the statement of the previous problem, if direct sum (on both sides of the equation) is replaced by direct product.

Problem 9. Let (I, \leq) be a right directed poset, and $\left\{\left(M_{i}\right)_{i \in I},\left(\psi_{j i}: M_{i} \rightarrow M_{j}\right)_{i \leq j}\right\}$ a directed system of A-modules. Prove that, for every $N \in A$-mod:

$$
\left(\lim _{\overrightarrow{i \in I}} M_{i}\right) \otimes N \cong \lim _{\vec{i} \vec{I}}\left(M_{i} \otimes N\right) .
$$

Problem 10. Is the statement from the previous problem true for inverse limits?

