ALGEBRA 2. HOMEWORK 4

Problem 1. Let \mathcal{A} be an abelian category.

(1) Show that a sequence of morphisms $0 \to A \xrightarrow{f} B \xrightarrow{g} C$ is exact if, and only if for every $X \in \mathcal{A}$, the following is an exact sequence in **Ab**:

$$0 \to \operatorname{Hom}_{\mathcal{A}}(X, A) \xrightarrow{f^{\circ}-} \operatorname{Hom}_{\mathcal{A}}(X, B) \xrightarrow{g^{\circ}-} \operatorname{Hom}_{\mathcal{A}}(X, C).$$

(2) Show that a sequence of morphisms $A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is exact if, and only if for every $X \in \mathcal{A}$, the following is an exact sequence in **Ab**:

$$0 \to \operatorname{Hom}_{\mathcal{A}}(C, X) \xrightarrow{-\circ g} \operatorname{Hom}_{\mathcal{A}}(B, X) \xrightarrow{-\circ f} \operatorname{Hom}_{\mathcal{A}}(A, X).$$

Problem 2. Let \mathcal{A} and \mathcal{B} be two abelian categories. Consider a pair of additive covariant functors $\mathcal{A} \underset{G}{\overset{F}{\underset{G}{\longrightarrow}}} \mathcal{B}$. Assume that (F, G) is an adjoint pair. Prove that F is right exact, and G is left exact.

Problem 3. Assume that C is an additive category in which arbitrary direct sums and products exist. Further assume that direct sums and products are isomorphic. Prove that C is trivial (that is, every object of C is isomorphic to the trivial one).

In problems 4–6 below, $\mathcal{A} = R$ -mod is the category of left R-modules for a unital ring R. **Problem 4.** Let J be a set. Prove that $\bigoplus_{J}, \prod_{J} : \mathcal{A}^{J} \to \mathcal{A}$ are exact functors.

Problem 5. Let (I, \leq) be a *right directed* partially ordered set. Prove that the direct limit $\lim_{\substack{\to\\(I,\leq)}} : \mathcal{F}(\mathbf{I},\mathcal{A}) \to \mathcal{A}$ is an exact functor. *Recall that* \mathbf{I} *is the category associated to the partially ordered set* (I, \leq) and $\mathcal{F}(\mathbf{I}, \mathcal{A})$ *is the category of direct systems valued in* \mathcal{A} .

Problem 6. Let (I, \leq) be a partially ordered set. Prove that the inverse limit $\varprojlim_{(I,\leq)}$: $\mathcal{F}(\mathbf{I}^{\mathrm{op}}, \mathcal{A}) \to \mathcal{A}$ is left exact, but not right exact.

In problems 7–10, $\mathcal{A} = A$ -mod for a unital commutative ring A.

Problem 7. Let I be a set, $\{M_i\}_{i \in I}$ a set of A-modules. For $N \in A$ -mod, show that we have an isomorphism:

$$\left(\bigoplus_{i\in I} M_i\right)\otimes N\cong \bigoplus_{i\in I} (M_i\otimes N).$$

Problem 8. Prove or give a counterexample to the statement of the previous problem, if direct sum (on both sides of the equation) is replaced by direct product.

Problem 9. Let (I, \leq) be a *right directed* poset, and $\{(M_i)_{i \in I}, (\psi_{ji} : M_i \to M_j)_{i \leq j}\}$ a directed system of A-modules. Prove that, for every $N \in A$ -mod:

$$\left(\lim_{i\in I}M_i\right)\otimes N\cong \lim_{i\in I}(M_i\otimes N).$$

Problem 10. Is the statement from the previous problem true for inverse limits?