ALGEBRA 2. HOMEWORK 5

In the problems below, $\mathcal{A} = R$ -mod is the abelian category of left R-modules, over a unital ring R. $\mathbb{K}^{\bullet}(\mathcal{A})$ is the category of complexes of R-modules.

Problem 1.– Consider the following commutative diagram with exact rows.

Assume that u is surjective and s is injective. Prove that $\operatorname{Ker}(w) = a(\operatorname{Ker}(v))$ and $\operatorname{Im}(v) = b^{-1}(\operatorname{Im}(w))$.

Problem 2.– Assume we have two morphisms of *R*–modules $M \xrightarrow{u} N \xrightarrow{v} P$. Prove that we get the following *exact sequence*:

$$0 \to \operatorname{Ker}(u) \to \operatorname{Ker}(v \circ u) \to \operatorname{Ker}(v) \to \operatorname{CoKer}(u) \to \operatorname{CoKer}(v \circ u) \to \operatorname{CoKer}(v) \to 0.$$

Problem 3.– (Pull–backs). Given two morphisms of *R*–modules

 $A \times_S B$ is defined as $\{(a, b) : f(a) = g(b)\} \subset A \times B$, with canonical maps $p_1 : A \times_S B \to A$ and $p_2 : A \times_S B \to B$, given by $p_1(a, b) = a$ and $p_2(a, b) = b$ (see Problem 3 of Mid Term 1, for a more categorical definition).

Let $M_1 \to M_2 \to M_3 \to 0$ be an exact sequence of R-modules, and assume that we have a morphism $X \to M_3$. Define $\widetilde{X}_2 = M_2 \times_{M_3} X$ and $\widetilde{X}_1 = M_1 \times_{M_2} \widetilde{X}_2$. Prove that the first row of the following diagram is exact:

Problem 4.– State and prove the result analogous to that of Problem 3, for "push-forwards".

Problem 5.– Consider the following diagram in \mathcal{A} with exact rows and commuting squares.

- (1) Prove that, if u', f, h are injective, then g is injective.
- (2) Prove that, if v, f, h are surjective, then g is surjective.
- (3) Prove that, if g is injective and f, v are surjective, then h is injective.
- (4) Prove that, if g is surjective and h, u' are injective, then f is surjective.

Problem 6.– Consider the subcategory of $\mathbb{K}^{\bullet}(\mathcal{A})$ consisting of exact complexes (i.e, C^{\bullet} such that $H^n(C^{\bullet}) = 0$ for every $n \in \mathbb{Z}$). Give an example to illustrate that this subcategory is not closed under taking kernels.

Problem 7.- Five lemma. Consider the following commutative diagram with exact rows.

- (1) Prove that if f_2, f_4 are injective and f_1 is surjective, then f_3 is injective.
- (2) Prove that if f_2 , f_4 are surjective and f_5 is injective, then f_3 is surjective.

Hence, if f_1, f_2, f_4, f_5 are isomorphisms, then so is f_3 .

Problem 8.– Let \mathcal{C} be an arbitrary abelian categories. A short exact sequence in \mathcal{C} , $0 \to X \to Y \to Z \to 0$ is said to be *split* if there exists an isomorphism $Y \xrightarrow{\sim} X \oplus Z$ making the following diagram commute:

Prove that a sequence $0 \to X \xrightarrow{i} Y \xrightarrow{\pi} Z \to 0$ is split if, and only if there exists $s : Z \to Y$ such that $\pi \circ s = \mathrm{Id}_Z$.

Problem 9.– Let C^{\bullet} and D^{\bullet} be two cochain complexes of R–modules. Let $\alpha^{\bullet} : C^{\bullet} \to D^{\bullet}$ be a morphism. Define:

- $C[1]^{\bullet} \in \mathbb{K}^{\bullet}(\mathcal{A})$ is a complex with $C[1]^n = C^{n+1}$ and $d_{C[1]}^n = -d_C^{n+1}$, for every $n \in \mathbb{Z}$.
- $\operatorname{Cone}(\alpha)$ is the following complex:
 - For every $n \in \mathbb{Z}$, $\operatorname{Cone}(\alpha)^n = C^{n+1} \oplus D^n$.
 - For every $n \in \mathbb{Z}$, the differential, denoted by d^n below, is given by the following expression, for every $x \in C^{n+1}$ and $y \in D^n$,

$$\mathsf{d}^{n}(x,y) = (-d_{C}^{n+1}(x), d_{D}^{n}(y) - \alpha^{n+1}(x))$$

- (1) Verify that $Cone(\alpha)$ is a complex.
- (2) Prove that we have the following short exact sequence of cochain complexes.

$$0 \to D^{\bullet} \to \operatorname{Cone}(\alpha) \to C^{\bullet}[1] \to 0$$

- (3) Prove that α^{\bullet} is null homotopic if, and only if, the sequence above is split (see the previous problem for its definition).
- (4) Prove that $H^n(\alpha)$ is an isomorphism, for every $n \in \mathbb{Z}$ if, and only if $H^n(\text{Cone}(\alpha)) = 0$ for every $n \in \mathbb{Z}$.

Problem 10.– Koszul complex. Let K be a field, A = K[x, y, z] be the (commutative) ring of polynomials in three variables, with coefficients from K. Let $A^{\oplus 3}$ be the A–module which is direct sum of three copies of A, with A–basis denoted by e_1, e_2, e_3 . Consider the following sequence of morphisms:

$$0 \to A \xrightarrow{d_2} A^{\oplus 3} \xrightarrow{d_1} A^{\oplus 3} \xrightarrow{d_0} A \to 0$$

- $d_0(e_1) = x$, $d_0(e_2) = y$, and $d_0(e_3) = z$.
- $d_1(e_1) = ze_2 ye_3$, $d_1(e_2) = xe_3 ze_1$, and $d_1(e_3) = ye_1 xe_2$.
- $d_2(1) = xe_1 + ye_2 + ze_3$.

Verify that this is a complex of A-modules. Prove that it is exact at each spot, except $\operatorname{CoKer}(d_0) = K \cong K[x, y, z]/(x, y, z).$

Bonus. Generalize this to the polynomial ring of *n*-variables.