ALGEBRA 2. HOMEWORK 5

In the problems below, $\mathcal{A}=R$-mod is the abelian category of left R-modules, over a unital ring $R . \mathbb{K}^{\bullet}(\mathcal{A})$ is the category of complexes of R-modules.

Problem 1.- Consider the following commutative diagram with exact rows.

Assume that u is surjective and s is injective. Prove that $\operatorname{Ker}(w)=a(\operatorname{Ker}(v))$ and $\operatorname{Im}(v)=b^{-1}(\operatorname{Im}(w))$.

Problem 2.- Assume we have two morphisms of $R-\operatorname{modules} M \xrightarrow{u} N \xrightarrow{v} P$. Prove that we get the following exact sequence:

$$
0 \rightarrow \operatorname{Ker}(u) \rightarrow \operatorname{Ker}(v \circ u) \rightarrow \operatorname{Ker}(v) \rightarrow \operatorname{CoKer}(u) \rightarrow \operatorname{CoKer}(v \circ u) \rightarrow \operatorname{CoKer}(v) \rightarrow 0
$$

Problem 3.- (Pull-backs). Given two morphisms of R-modules

$A \times_{S} B$ is defined as $\{(a, b): f(a)=g(b)\} \subset A \times B$, with canonical maps $p_{1}: A \times_{S} B \rightarrow A$ and $p_{2}: A \times_{S} B \rightarrow B$, given by $p_{1}(a, b)=a$ and $p_{2}(a, b)=b$ (see Problem 3 of Mid Term 1, for a more categorical definition).

Let $M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$ be an exact sequence of R-modules, and assume that we have a morphism $X \rightarrow M_{3}$. Define $\widetilde{X_{2}}=M_{2} \times_{M_{3}} X$ and $\widetilde{X_{1}}=M_{1} \times_{M_{2}} \widetilde{X_{2}}$. Prove that the first row of the following diagram is exact:

Problem 4.- State and prove the result analogous to that of Problem 3, for "pushforwards".

Problem 5.- Consider the following diagram in \mathcal{A} with exact rows and commuting squares.

(1) Prove that, if u^{\prime}, f, h are injective, then g is injective.
(2) Prove that, if v, f, h are surjective, then g is surjective.
(3) Prove that, if g is injective and f, v are surjective, then h is injective.
(4) Prove that, if g is surjective and h, u^{\prime} are injective, then f is surjective.

Problem 6.- Consider the subcategory of $\mathbb{K}^{\bullet}(\mathcal{A})$ consisting of exact complexes (i.e, C^{\bullet} such that $H^{n}\left(C^{\bullet}\right)=0$ for every $\left.n \in \mathbb{Z}\right)$. Give an example to illustrate that this subcategory is not closed under taking kernels.

Problem 7.- Five lemma. Consider the following commutative diagram with exact rows.

(1) Prove that if f_{2}, f_{4} are injective and f_{1} is surjective, then f_{3} is injective.
(2) Prove that if f_{2}, f_{4} are surjective and f_{5} is injective, then f_{3} is surjective.

Hence, if $f_{1}, f_{2}, f_{4}, f_{5}$ are isomorphisms, then so is f_{3}.
Problem 8.- Let \mathcal{C} be an arbitrary abelian categories. A short exact sequence in $\mathcal{C}, 0 \rightarrow$ $X \rightarrow Y \rightarrow Z \rightarrow 0$ is said to be split if there exists an isomorphism $Y \xrightarrow{\sim} X \oplus Z$ making the following diagram commute:

Prove that a sequence $0 \rightarrow X \xrightarrow{i} Y \xrightarrow{\pi} Z \rightarrow 0$ is split if, and only if there exists $s: Z \rightarrow Y$ such that $\pi \circ s=\operatorname{Id}_{Z}$.

Problem 9.- Let C^{\bullet} and D^{\bullet} be two cochain complexes of R-modules. Let $\alpha^{\bullet}: C^{\bullet} \rightarrow D^{\bullet}$ be a morphism. Define:

- $C[1]^{\bullet} \in \mathbb{K}^{\bullet}(\mathcal{A})$ is a complex with $C[1]^{n}=C^{n+1}$ and $d_{C[1]}^{n}=-d_{C}^{n+1}$, for every $n \in \mathbb{Z}$.
- Cone (α) is the following complex:
- For every $n \in \mathbb{Z}$, Cone $(\alpha)^{n}=C^{n+1} \oplus D^{n}$.
- For every $n \in \mathbb{Z}$, the differential, denoted by d^{n} below, is given by the following expression, for every $x \in C^{n+1}$ and $y \in D^{n}$,

$$
\mathrm{d}^{n}(x, y)=\left(-d_{C}^{n+1}(x), d_{D}^{n}(y)-\alpha^{n+1}(x)\right)
$$

(1) Verify that Cone (α) is a complex.
(2) Prove that we have the following short exact sequence of cochain complexes.

$$
0 \rightarrow D^{\bullet} \rightarrow \text { Cone }(\alpha) \rightarrow C^{\bullet}[1] \rightarrow 0
$$

(3) Prove that α^{\bullet} is null homotopic if, and only if, the sequence above is split (see the previous problem for its definition).
(4) Prove that $H^{n}(\alpha)$ is an isomorphism, for every $n \in \mathbb{Z}$ if, and only if $H^{n}(\operatorname{Cone}(\alpha))=0$ for every $n \in \mathbb{Z}$.

Problem 10.- Koszul complex. Let K be a field, $A=K[x, y, z]$ be the (commutative) ring of polynomials in three variables, with coefficients from K. Let $A^{\oplus 3}$ be the A-module which is direct sum of three copies of A, with A-basis denoted by e_{1}, e_{2}, e_{3}. Consider the following sequence of morphisms:

$$
0 \rightarrow A \xrightarrow{d_{2}} A^{\oplus 3} \xrightarrow{d_{1}} A^{\oplus 3} \xrightarrow{d_{0}} A \rightarrow 0
$$

- $d_{0}\left(e_{1}\right)=x, d_{0}\left(e_{2}\right)=y$, and $d_{0}\left(e_{3}\right)=z$.
- $d_{1}\left(e_{1}\right)=z e_{2}-y e_{3}, d_{1}\left(e_{2}\right)=x e_{3}-z e_{1}$, and $d_{1}\left(e_{3}\right)=y e_{1}-x e_{2}$.
- $d_{2}(1)=x e_{1}+y e_{2}+z e_{3}$.

Verify that this is a complex of A-modules. Prove that it is exact at each spot, except $\operatorname{CoKer}\left(d_{0}\right)=K \cong K[x, y, z] /(x, y, z)$.

Bonus. Generalize this to the polynomial ring of n-variables.

