## ALGEBRA 2. HOMEWORK 6

$R$-mod is the abelian category of left $R$-modules, over a unital ring $R$.
Problem 1.- Let $I$ be a set and let $R^{(I)}$ be the direct sum of $I$ copies of $R$, viewed as a left $R$-module.

$$
R^{(I)}=\bigoplus_{i \in I} M_{i}, \quad \text { where } M_{i}=R, \forall i \in I
$$

Prove that $R^{(I)}$ is a projective module. Any module isomorphic to $R^{(I)}$ for some indexing set $I$ is called a free $R$-module. This problem is asking you to prove that free implies projective.

Problem 2.- Prove that an $R$-module $P$ is projective if, and only if there exists $P^{\prime}$ such that $P \oplus P^{\prime}$ is free (see problem 1).

Problem 3.- Prove that $R$-mod has enough projectives, using Problem 1.
Problem 4.- Assume that there exists $p \in R$ such that $p^{2}=p$. Prove that $M=R p$ (left ideal generated by $p$ ) is a projective $R$-module.

Problem 5.- Prove that $\mathbb{Z} / 3 \mathbb{Z}$, is a projective $\mathbb{Z} / 6 \mathbb{Z}$-module.
Problem 6.- Let $M \in R$-mod and assume that we have two short exact sequences with $P_{1}, P_{2}$ projectives:

$$
0 \rightarrow N_{1} \rightarrow P_{1} \rightarrow M \rightarrow 0, \quad \text { and } \quad 0 \rightarrow N_{2} \rightarrow P_{2} \rightarrow M \rightarrow 0
$$

Prove that $P_{1} \oplus N_{2} \cong P_{2} \oplus N_{1}$.
Problem 7.- Prove that direct sum of projective modules is projective. Prove that direct product of injective modules is injective.

Problem 8.- Assume that $R$ is commutative, and $P$ is a projective $R$-module. Prove that $P \otimes-: R-\bmod \rightarrow R-\bmod$ is exact.

Problem 9.- Let $N \in \mathbb{Z}_{\geq 2}$. Verify that $0 \rightarrow \mathbb{Z} \xrightarrow{\mu_{N}} \mathbb{Z} \rightarrow 0$, where $\mu_{N}$ is multiplication by $N$, is a projective resolution of $\mathbb{Z} / N \mathbb{Z} \in \mathbb{Z}$-mod.

Problem 10.- Prove that the following infinite complex is a projective resolution of $\mathbb{Z} / 3 \mathbb{Z}$ as a module over $\mathbb{Z} / 9 \mathbb{Z}$ :

$$
\cdots \xrightarrow{\mu_{3}} \mathbb{Z} / 9 \mathbb{Z} \xrightarrow{\mu_{3}} \mathbb{Z} / 9 \mathbb{Z} \xrightarrow{\mu_{3}} \mathbb{Z} / 9 \mathbb{Z} \rightarrow 0 .
$$

Problem 11.- Assume that $R$ is commutative, and $M, N \in R-\bmod$. Let $Q \in \mathbf{A b}=\mathbb{Z}$ - $\bmod$. Prove that we have an isomorphism of $R$-modules:

$$
\operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{\mathbb{Z}}(N, Q)\right) \cong \operatorname{Hom}_{\mathbb{Z}}\left(M \otimes_{R} N, Q\right)
$$

where, for an $R$-module $X$ and an abelian group $Y$, the abelian group $\operatorname{Hom}_{\mathbb{Z}}(X, Y)$ has a structure of an $R$-module via:

$$
r \in R, f \in \operatorname{Hom}_{\mathbb{Z}}(X, Y) \quad \rightsquigarrow \quad(r \cdot f)(x)=f(r x) .
$$

