ALGEBRA 2. HOMEWORK 8

In problems below, Hom denotes homomorphisms of commutative unital rings.

Problem 1.– Let L/K be a field extension such that $L = K(\alpha)$ for an algebraic element $\alpha \in L$ such that degree of the minimal polynomial $\mathbf{m}_{\alpha}(x)$ is odd. Prove that $L = K(\alpha^2)$.

Problem 2.– Let L/K be a field extension. Assume we have two elements $\alpha, \beta \in L$, which are both algebraic over K. Prove that, if deg($\mathfrak{m}_{\alpha}(x)$) and deg($\mathfrak{m}_{\beta}(x)$) are coprime, then $\mathfrak{m}_{\alpha}(x)$ is irreducible in $K(\beta)[x]$.

Problem 3.– Let L/K be an *algebraic* extension. Let $R \subset E$ be a subring containing K. Prove that R is a field.

Problem 4.– Let K be the splitting extension of $p(x) = x^5 - 7$ over \mathbb{Q} . Compute $[K : \mathbb{Q}]$.

Problem 5.– Determine the minimal polynomials, over \mathbb{Q} , of the following elements of \mathbb{C} . Here, $\iota^2 = -1$.

(i)
$$\sqrt{2} + \sqrt{3}$$
, (ii) $\frac{1 + \iota\sqrt{3}}{2}$, (iii) $\iota + 5^{\frac{1}{3}}$.

Problem 6.– Let $p \in \mathbb{Z}_{\geq 2}$ be a prime number. For any $m \in \mathbb{Z}_{\geq 0}$, prove that there is a unique sequence:

$$e^{(p)}(m) = (c_i)_{i \in \mathbb{Z}_{\geq 0}} \in \{0, 1, \dots, p-1\}^{\mathbb{Z}_{\geq 0}}$$

such that $m = \sum_{i=0}^{\infty} c_i p^i$ (expansion in base p, note that $c_i = 0$ if $p^i > m$). Prove that the following factorization holds in $\mathbb{F}_p[x]$:

$$(1+x)^m = \prod_{i=0}^{\infty} \left(1+x^{p^i}\right)^{c_i}.$$

(Hint: prove that in $\mathbb{F}_p(y)$, we have $(1+y)^p = 1+y^p$. See how c_i will change if both sides of the equation are multiplied by (1+x). Then show that the same rule gives the entries of $e_i^{(p)}(m+1)$ from those of $e_i^{(p)}(m)$.)

Use the equation above to prove the following identity. For $m, n \in \mathbb{Z}_{\geq 0}$, let $e^{(p)}(m) = (c_i)$ and $e^{(p)}(n) = (d_i)$. Then we have:

$$\binom{m}{n} = \prod_{i=0}^{\infty} \binom{c_i}{d_i} \pmod{p},$$

where, our convention is $\begin{pmatrix} 0\\0 \end{pmatrix} = 1$ and $\begin{pmatrix} k\\\ell \end{pmatrix} = 0$, if $k < \ell$.

Problem 7.– For $a \in \mathbb{Z}$ consider the polynomial $f_a(x) = x^4 - ax - 1 \in \mathbb{Z}[x]$. Prove that if $a \neq 0$, then $f_a(x)$ is irreducible in $\mathbb{Q}[x]$. Consider the field $K_a = \mathbb{Q}[x]/(f_a(x))$. Prove that there are infinitely many $a \in \mathbb{Z}_{\neq 0}$ such that: $\mathbb{Q} \subset E \subset K_a \Rightarrow E = \mathbb{Q}$ or $E = K_a$, where E is a subextension of $\mathbb{Q} \subset K_a$.

Problem 8.– Verify that $x^3 - 2 \in \mathbb{Q}[x]$ is irreducible. Let $K = \mathbb{Q}[x]/(x^3 - 2)$. Prove that Hom (K, \mathbb{C}) has exactly 3 elements.

Problem 9.– Let K be a field and L = K(t) be the field of rational functions of one variable t with coefficients from K. Prove that $L^{alg} = K$.

Problem 10.– Let L/K be an algebraic extension. Prove that (i) if $|K| < \infty$, then L is at most countable; (ii) if K is countable, then L is countable. Deduce that there are uncountably many transcendental real numbers.

Definition.– Let L/K be a field extension and assume $E, F \subset L$ are two subfields containing K. Let $EF \subset L$ be the smallest subfield containing both E and F, called the composite extension.

We say E and F are *linearly disjoint* if the multiplication map:

 $\mu: E \otimes_K F \to L, \qquad \mu(e \otimes f) = ef, \ \forall \ e \in E, f \in F,$

is injective.

Problem 11.– Assuming both E and F are finite over K, prove that

$$[EF:K] \le [E:K] \cdot [F:K].$$

Prove that if gcd([E:K], [F:K]) = 1, then this is an equality.

Problem 12.– Prove that E and F are linearly disjoint if and only if for every basis $\{\alpha_i\}_{i \in I}$ (resp. $\{\beta_j\}_{j \in J}$) of E (resp. F) over K, $\{\alpha_i\beta_j\}_{(i,j)\in I\times J}$ is a basis of EF over K.

Problem 13.– Assume that there exist $\alpha, \beta \in L$, algebraic over K, such that $E = K(\alpha)$, $F = K(\beta)$, and $\mathbf{m}_{\alpha}(x) = \mathbf{m}_{\beta}(x)$. Show that E and F are not linearly disjoint.

Problem 14.– In the set up of Problem 2, prove that $K(\alpha)$ and $K(\beta)$ are linearly disjoint. Use this to give an example of a pair of linearly disjoint subextensions when $K = \mathbb{Q}$ and $L = \mathbb{C}$.