ALGEBRA 2. HOMEWORK 8

In problems below, Hom denotes homomorphisms of commutative unital rings.
Problem 1.- Let L / K be a field extension such that $L=K(\alpha)$ for an algebraic element $\alpha \in L$ such that degree of the minimal polynomial $\mathrm{m}_{\alpha}(x)$ is odd. Prove that $L=K\left(\alpha^{2}\right)$.

Problem 2.- Let L / K be a field extension. Assume we have two elements $\alpha, \beta \in L$, which are both algebraic over K. Prove that, if $\operatorname{deg}\left(\mathrm{m}_{\alpha}(x)\right)$ and $\operatorname{deg}\left(\mathrm{m}_{\beta}(x)\right)$ are coprime, then $\mathrm{m}_{\alpha}(x)$ is irreducible in $K(\beta)[x]$.

Problem 3.- Let L / K be an algebraic extension. Let $R \subset E$ be a subring containing K. Prove that R is a field.

Problem 4.- Let K be the splitting extension of $p(x)=x^{5}-7$ over \mathbb{Q}. Compute $[K: \mathbb{Q}]$.
Problem 5.- Determine the minimal polynomials, over \mathbb{Q}, of the following elements of \mathbb{C}. Here, $\iota^{2}=-1$.

$$
\text { (i) } \sqrt{2}+\sqrt{3}, \quad \text { (ii) } \frac{1+\iota \sqrt{3}}{2}, \quad \text { (iii) } \iota+5^{\frac{1}{3}} .
$$

Problem 6.- Let $p \in \mathbb{Z}_{\geq 2}$ be a prime number. For any $m \in \mathbb{Z}_{\geq 0}$, prove that there is a unique sequence:

$$
e^{(p)}(m)=\left(c_{i}\right)_{i \in \mathbb{Z}_{\geq 0}} \in\{0,1, \ldots, p-1\}^{\mathbb{Z}_{\geq 0}}
$$

such that $m=\sum_{i=0}^{\infty} c_{i} p^{i}$ (expansion in base p, note that $c_{i}=0$ if $p^{i}>m$). Prove that the following factorization holds in $\mathbb{F}_{p}[x]$:

$$
(1+x)^{m}=\prod_{i=0}^{\infty}\left(1+x^{p^{i}}\right)^{c_{i}} .
$$

(Hint: prove that in $\mathbb{F}_{p}(y)$, we have $(1+y)^{p}=1+y^{p}$. See how c_{i} will change if both sides of the equation are multiplied by $(1+x)$. Then show that the same rule gives the entries of $e_{i}^{(p)}(m+1)$ from those of $\left.e_{i}^{(p)}(m).\right)$

Use the equation above to prove the following identity. For $m, n \in \mathbb{Z}_{\geq 0}$, let $e^{(p)}(m)=\left(c_{i}\right)$ and $e^{(p)}(n)=\left(d_{i}\right)$. Then we have:

$$
\binom{m}{n}=\prod_{i=0}^{\infty}\binom{c_{i}}{d_{i}}(\bmod p)
$$

where, our convention is $\binom{0}{0}=1$ and $\binom{k}{\ell}=0$, if $k<\ell$.

Problem 7.- For $a \in \mathbb{Z}$ consider the polynomial $f_{a}(x)=x^{4}-a x-1 \in \mathbb{Z}[x]$. Prove that if $a \neq 0$, then $f_{a}(x)$ is irreducible in $\mathbb{Q}[x]$. Consider the field $K_{a}=\mathbb{Q}[x] /\left(f_{a}(x)\right)$. Prove that there are infinitely many $a \in \mathbb{Z}_{\neq 0}$ such that: $\mathbb{Q} \subset E \subset K_{a} \Rightarrow E=\mathbb{Q}$ or $E=K_{a}$, where E is a subextension of $\mathbb{Q} \subset K_{a}$.

Problem 8.- Verify that $x^{3}-2 \in \mathbb{Q}[x]$ is irreducible. Let $K=\mathbb{Q}[x] /\left(x^{3}-2\right)$. Prove that $\operatorname{Hom}(K, \mathbb{C})$ has exactly 3 elements.

Problem 9.- Let K be a field and $L=K(t)$ be the field of rational functions of one variable t with coefficients from K. Prove that $L^{\text {alg }}=K$.

Problem 10.- Let L / K be an algebraic extension. Prove that (i) if $|K|<\infty$, then L is at most countable; (ii) if K is countable, then L is countable. Deduce that there are uncountably many transcendental real numbers.

Definition.- Let L / K be a field extension and assume $E, F \subset L$ are two subfields containing K. Let $E F \subset L$ be the smallest subfield containing both E and F, called the composite extension.

We say E and F are linearly disjoint if the multiplication map:

$$
\mu: E \otimes_{K} F \rightarrow L, \quad \mu(e \otimes f)=e f, \forall e \in E, f \in F,
$$

is injective.
Problem 11.- Assuming both E and F are finite over K, prove that

$$
[E F: K] \leq[E: K] \cdot[F: K] .
$$

Prove that if $\operatorname{gcd}([E: K],[F: K])=1$, then this is an equality.
Problem 12.- Prove that E and F are linearly disjoint if and only if for every basis $\left\{\alpha_{i}\right\}_{i \in I}$ (resp. $\left\{\beta_{j}\right\}_{j \in J}$) of E (resp. F) over $K,\left\{\alpha_{i} \beta_{j}\right\}_{(i, j) \in I \times J}$ is is a basis of $E F$ over K.

Problem 13.- Assume that there exist $\alpha, \beta \in L$, algebraic over K, such that $E=K(\alpha)$, $F=K(\beta)$, and $\mathrm{m}_{\alpha}(x)=\mathrm{m}_{\beta}(x)$. Show that E and F are not linearly disjoint.

Problem 14.- In the set up of Problem 2, prove that $K(\alpha)$ and $K(\beta)$ are linearly disjoint. Use this to give an example of a pair of linearly disjoint subextensions when $K=\mathbb{Q}$ and $L=\mathbb{C}$.

