ALGEBRA 2. HOMEWORK 9

Problem 1.- Let K be a field and let $p(x) \in K[x]$ be a monic polynomial of degree n polynomial. Let L / K be the splitting extension of $p(x)$. Prove that $[L: K]$ divides n !.

Problem 2.- Prove that $f(x)=x^{6}+x^{3}+1 \in \mathbb{Q}[x]$ is irreducible. Determine its 6 roots in \mathbb{C}.
Problem 3.- Prove that the splitting extension of $x^{3}-2$ over \mathbb{Q} has degree 6 .
Problem 4.- Let L / K be an algebraic extension. Let $\sigma: L \rightarrow L$ be a ring homomorphism such that $\left.\sigma\right|_{K}=\operatorname{Id}_{K}$. Prove that σ is then an isomorphism.

Problem 5.- Give an example to prove that the assertion of Problem 1 is false, if E / F is not assumed to be algebraic.

Problem 6.- Let $\zeta=\exp \left(\frac{2 \pi \iota}{7}\right) \in \mathbb{C}$. Prove that $\mathbb{Q}(\zeta)$ is a Galois extension of \mathbb{Q}.
Problem 7.- Let $k \subset K$ be two fields, and assume that K is algebraically closed. Let K^{\prime} consist of all elements of K which are algebraic over k. Prove that K^{\prime} is isomorphic to the algebraic closure of k.

Problem 8.- Let $a, b \in \mathbb{Q}$ and consider $f(x)=x^{3}-a x+b \in \mathbb{Q}[x]$. Let L be the splitting extension of $f(x)$ over \mathbb{Q}. If $\alpha, \beta, \gamma \in L$ are the roots of f, then set $\Delta=(\alpha-\beta)^{2}(\alpha-\gamma)^{2}(\beta-\gamma)^{2} \in$ $\mathbb{Q}((-1)$ times the discriminant of f, as defined in Lecture 27). Assuming $f(x)$ is irreducible, prove that $[L: \mathbb{Q}]=6$ if and only if $\sqrt{\Delta} \notin \mathbb{Q}$.

Problem 9.- Let K be a field and let $f(x), g(x) \in K[x]$ be two monic polynomials of degrees m, n respectively. Let L / K be the splitting extension of $\{f(x), g(x)\}$. Let $r_{1}, \ldots, r_{m} ; s_{1}, \ldots, s_{n} \in L$ be the roots of $f(x)$ and $g(x)$ respectively.
(1) Prove that the following is an element of K :

$$
\operatorname{Res}(f, g)=\prod_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}\left(r_{i}-s_{j}\right),
$$

called the resultant of f and g.
(2) Prove that there is a unique polynomial $P\left(A_{1}, \ldots, A_{m} ; B_{1}, \ldots, B_{n}\right)$ in $m+n$ variables such that, for every $f(x)=x^{m}+\sum_{j=1}^{m} a_{j} x^{m-j}$ and $g(x)=x^{n}+\sum_{k=1}^{n} b_{k} x^{n-k}$, $\operatorname{Res}(f, g)=P\left(a_{1}, \ldots, a_{m} ; b_{1}, \ldots, b_{n}\right)$.
(3) Prove that $\operatorname{Res}(f, g)=0$ if and only if f and g have a common root in \bar{K} (algebraic closure of K).
(4) For $f=x^{2}+b_{1} x+c_{1}$ and $g=x^{2}+b_{2} x+c_{2}$, compute $\operatorname{Res}(f, g)$.

Problem 10.- Let K be a field and let $L=K(T)$ be the field of rational functions in one variable T.
(1) Prove that for every $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(K)$, we have an element $\sigma_{g} \in \mathrm{G}(L / K)$ given by:

$$
\sigma_{g}(T)=\frac{a T+b}{c T+d}
$$

(2) Let $\psi: \mathrm{GL}_{2}(K) \rightarrow \mathrm{G}(L / K)$ be given by $\psi(g)=\sigma_{g}$. Verify that ψ is a group homomorphism and $\operatorname{Ker}(\psi)=K^{\times} \mathrm{Id}_{2}$, where $K^{\times}=K \backslash\{0\}$ and Id_{2} is the 2×2 identity matrix.
(3) Let $\mathrm{PGL}_{2}(K)=\mathrm{GL}_{2}(K) / \operatorname{Ker}(\psi)$. Prove that $\mathrm{PGL}_{2}(K) \cong \mathrm{G}(L / K)$.
(4) Assume that K is an infinite field. Prove that L / K is a Galois extension.
(Hint for (3). Let $y=\frac{g(T)}{h(T)} \in K(T)$, where g and h have no common factor. Define $\operatorname{ht}(y):=\max (\operatorname{deg}(g), \operatorname{deg}(h))$, height of y. Prove that, if $y \notin K$, then $g(X)-h(X) y \in$ $(K(y))[X]$ is irreducible. Use this to show that, if $\operatorname{ht}(y)=n>0$, then L is an algebraic extension of $K(y)$ of degree n.)

