ALGEBRA 2. HOMEWORK 9

Problem 1.– Let K be a field and let $p(x) \in K[x]$ be a monic polynomial of degree n polynomial. Let L/K be the splitting extension of p(x). Prove that [L:K] divides n!.

Problem 2.– Prove that $f(x) = x^6 + x^3 + 1 \in \mathbb{Q}[x]$ is irreducible. Determine its 6 roots in \mathbb{C} .

Problem 3.– Prove that the splitting extension of $x^3 - 2$ over \mathbb{Q} has degree 6.

Problem 4.– Let L/K be an algebraic extension. Let $\sigma : L \to L$ be a ring homomorphism such that $\sigma|_K = \operatorname{Id}_K$. Prove that σ is then an isomorphism.

Problem 5.– Give an example to prove that the assertion of Problem 1 is false, if E/F is not assumed to be algebraic.

Problem 6.– Let $\zeta = \exp\left(\frac{2\pi\iota}{7}\right) \in \mathbb{C}$. Prove that $\mathbb{Q}(\zeta)$ is a Galois extension of \mathbb{Q} .

Problem 7.– Let $k \subset K$ be two fields, and assume that K is algebraically closed. Let K' consist of all elements of K which are algebraic over k. Prove that K' is isomorphic to the algebraic closure of k.

Problem 8.– Let $a, b \in \mathbb{Q}$ and consider $f(x) = x^3 - ax + b \in \mathbb{Q}[x]$. Let L be the splitting extension of f(x) over \mathbb{Q} . If $\alpha, \beta, \gamma \in L$ are the roots of f, then set $\Delta = (\alpha - \beta)^2 (\alpha - \gamma)^2 (\beta - \gamma)^2 \in \mathbb{Q}$ ((-1) times the discriminant of f, as defined in Lecture 27). Assuming f(x) is irreducible, prove that $[L : \mathbb{Q}] = 6$ if and only if $\sqrt{\Delta} \notin \mathbb{Q}$.

Problem 9.– Let K be a field and let $f(x), g(x) \in K[x]$ be two monic polynomials of degrees m, n respectively. Let L/K be the splitting extension of $\{f(x), g(x)\}$. Let $r_1, \ldots, r_m; s_1, \ldots, s_n \in L$ be the roots of f(x) and g(x) respectively.

(1) Prove that the following is an element of K:

$$\operatorname{Res}(f,g) = \prod_{\substack{1 \le i \le m \\ 1 \le j \le n}} (r_i - s_j),$$

called the resultant of f and g.

- (2) Prove that there is a unique polynomial $P(A_1, \ldots, A_m; B_1, \ldots, B_n)$ in m + n variables such that, for every $f(x) = x^m + \sum_{j=1}^m a_j x^{m-j}$ and $g(x) = x^n + \sum_{k=1}^n b_k x^{n-k}$, $\operatorname{Res}(f,g) = P(a_1, \ldots, a_m; b_1, \ldots, b_n).$
- (3) Prove that $\operatorname{Res}(f,g) = 0$ if and only if f and g have a common root in \overline{K} (algebraic closure of K).

(4) For $f = x^2 + b_1 x + c_1$ and $g = x^2 + b_2 x + c_2$, compute Res(f, g).

Problem 10.– Let K be a field and let L = K(T) be the field of rational functions in one variable T.

(1) Prove that for every $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(K)$, we have an element $\sigma_g \in \mathsf{G}(L/K)$ given by:

$$\sigma_g(T) = \frac{aT+b}{cT+d}.$$

- (2) Let $\psi : \operatorname{GL}_2(K) \to \operatorname{\mathsf{G}}(L/K)$ be given by $\psi(g) = \sigma_g$. Verify that ψ is a group homomorphism and $\operatorname{Ker}(\psi) = K^{\times} \operatorname{Id}_2$, where $K^{\times} = K \setminus \{0\}$ and Id_2 is the 2 × 2 identity matrix.
- (3) Let $\operatorname{PGL}_2(K) = \operatorname{GL}_2(K) / \operatorname{Ker}(\psi)$. Prove that $\operatorname{PGL}_2(K) \cong \mathsf{G}(L/K)$.
- (4) Assume that K is an infinite field. Prove that L/K is a Galois extension.

(Hint for (3). Let $y = \frac{g(T)}{h(T)} \in K(T)$, where g and h have no common factor. Define ht(y) := max(deg(g), deg(h)), height of y. Prove that, if $y \notin K$, then $g(X) - h(X)y \in (K(y))[X]$ is irreducible. Use this to show that, if ht(y) = n > 0, then L is an algebraic extension of K(y) of degree n.)