ALGEBRA 2. HOMEWORK 10

Problem 1.– Prove that every algebraic extension of a perfect field is perfect.

Problem 2.– Let $p \in \mathbb{Z}_{\geq 2}$ be a prime number and \mathbb{F}_p be the field with p elements. Let λ be a variable and let $K = \mathbb{F}_p(\lambda)$ be the field of rational functions in λ with coefficients from \mathbb{F}_p . For each $n \in \mathbb{Z}_{\geq 1}$, let K_n be the splitting extension of $x^{p^n} - \lambda \in K[x]$.

(1) Prove that we have a chain of field extensions:

$$K \subset K_1 \subset K_2 \subset \ldots$$

(2) Prove that $G(K_n/K) = {\text{Id}}$ for every n. (3) Let $\widetilde{K} = \bigcup K_n$. Prove that \widetilde{K} is a perfect field.

Problem 3.– Again, let $p \in \mathbb{Z}_{\geq 2}$ be a prime number. Consider $K = \mathbb{F}_p(\lambda, \mu)$ and L be the splitting extension of $\{x^p - \lambda, x^p - \mu\} \subset K[x]$. Prove or disprove: there exists $\gamma \in L$ such that $L \cong K(\gamma)$.

Problem 4.– Let L/K be a Galois extension. Let $\alpha \in L$ and $f(x) = \mathsf{m}_{\alpha}(x) \in K[x]$. Let $n = \deg(f) \in \mathbb{Z}_{\geq 1}$. Let $\{r_1, \ldots, r_n\} \subset L$ be the set of *n* distinct roots of f(x).

(1) Prove that we have a group homomorphism

$$\phi_f: \mathsf{G}(L/K) \to \mathfrak{S}_n,$$

given by $\phi_f(g) = \sigma$ if $g(r_i) = r_{\sigma(i)}$ for every $1 \le i \le n$.

(2) Let $E = K(r_1, \ldots, r_n) \subset L$. Prove that the restriction homomorphism $\rho_{E,L}$: $G(L/K) \to G(E/K)$ commutes with ϕ_f . That is, the following diagram commutes:

$$\mathsf{G}\left(L/K\right) \xrightarrow{\rho_{E,L}} \mathsf{G}\left(E/K\right)$$

(3) Prove that the action of G(E/K) on the set $\{1, \ldots, n\}$, via ϕ_f , is transitive. That is, for any i, j there exits $g \in G(E/K)$ such that $\phi_f(g) : i \mapsto j$.

Problem 5.– Let L/K be a normal extension. Let E be an intermediate field: $K \subset E \subset L$ and let $\sigma : E \to L$ be an embedding which is the identity on K. Prove that σ extends to an automorphism of L.

Problem 6.– Let $K = \mathbb{Q}$, E be the splitting field of $X^2 - 2 \in \mathbb{Q}[X]$ over \mathbb{Q} . Thus $E = \mathbb{Q}(\sqrt{2})$. Let L be the splitting field of $X^2 - \sqrt{2} \in E[X]$ over E. Describe the group $\mathsf{G}(L/K)$. Prove that L/K is not a Galois extension. Splitting extension of a splitting extension is not necessarily splitting extension. **Problem 7.**– Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ and $K = \mathbb{Q}$. Compute $\mathsf{G}(L/K)$. Is L/K a Galois extension?

Problem 8.– Let $\alpha = \sqrt{2 + \sqrt{2}} \in \mathbb{R}$. Compute $\mathsf{G}(\mathbb{Q}(\alpha)/\mathbb{Q})$.

Problem 9.– Let $n \in \mathbb{Z}_{\geq 2}$ and consider $L = \mathbb{Q}(T_1, \ldots, T_n)$. Let G be a subgroup of \mathfrak{S}_n , and let $K = L^G$. Prove that L/K is a Galois extension with $\mathsf{G}(L/K) = G$.

Assume that L/K is a Galois extension and let $\Gamma = \mathsf{G}(L/K)$. Given an *L*-vector space *V*, a *K*-structure on *V* is the data of a vector sub-*K*-subspace $V_0 \subset V$ such that the canonical map $L \otimes_K V_0 \to V$, given by $\alpha \otimes v \mapsto \alpha \cdot v$, is an isomorphism.

Let $V_0 \subset V$ be a *K*-structure on an *L*-vector space *V*. We get an action of Γ on *V* as follows. Let $\{e_i\}_{i \in I}$ be a basis of V_0 . For any $v \in V$, write $v = \sum_{i \in I} \alpha_i e_i$, where $\alpha_i \in L$. Then, for any $\sigma \in \Gamma$ we define:

$$u_{\sigma}(v) = \sum_{i \in I} \sigma(\alpha_i) e_i.$$

Problem 10.– Let L/K, $V_0 \subset V$, Γ and $\{u_{\sigma} : V \to V\}_{\sigma \in \Gamma}$ be as above.

(1) Prove that $\sigma \mapsto u_{\sigma}$ is a group homomorphism $\Gamma \to \operatorname{Aut}_{K \to vs}(V)$ such that for every $\alpha \in L, \sigma \in \Gamma$ and $v \in V$, we have:

$$u_{\sigma}(\alpha v) = \sigma(\alpha)u_{\sigma}(v).$$

- (2) Let $x \in V$. Prove that $x \in V_0$ if and only if $u_{\sigma}(x) = x$ for every $\sigma \in \Gamma$.
- (3) Let $U \subset V$ be a vector sub-*L*-subspace. Prove that $U_0 = U \cap V_0$ is a *K*-structure on U if and only if $u_{\sigma}(U) \subset U$ for every $\sigma \in \Gamma$. (In this case, we say U is rational over K).
- (4) Let V, W be two L-vector spaces, together with K-structures $V_0 \subset V$ and $W_0 \subset W$. Let $f : V \to W$ be an L-linear map. Prove that $f(V_0) \subset W_0$ if and only if $f(u_{\sigma}(x)) = u_{\sigma}(f(x))$ for every $x \in V$. (In this case, we say f is rational over K).

Problem 11.– Let V be an L–vector space and assume that we are given a group homomorphism $u: \Gamma \to \operatorname{Aut}_{K \to vs}(V)$ (denoted as before by $\sigma \mapsto u_{\sigma}$) such that

$$u_{\sigma}(\alpha v) = \sigma(\alpha)u_{\sigma}(v), \quad \forall \ \sigma \in \Gamma, \ \alpha \in L, v \in V.$$

Let $V_0 = \{v \in V : u_{\sigma}(v) = v, \forall \sigma \in \Gamma\}$. Prove that if $|\Gamma| < \infty$ then $V_0 \subset V$ is a K-structure on V.

Problem 12.– (from Algebra 1). Let $A = \mathbb{Z}$, or K[x]. Let M be a finitely generated, torsion module over A. Prove that there exists $x \in M$ such that Ann(x) = Ann(M). Here,

Ann
$$(x) = \{a \in A : ax = 0\},$$
 Ann $(M) = \{a \in A : am = 0, \forall m \in M\}.$